Sylvie Ferrario-Méry

Learn More
Tobacco (Nicotiana tabacum) plants expressing a partial ferredoxin-dependent glutamine-2-oxoglutarate aminotransferase (Fd-GOGAT) cDNA in the antisense orientation under the control of the 35S promoter, were used to study the metabolism of amino acids, 2-oxoglutarate and ammonium following the transition from CO2 enrichment (where photorespiration is(More)
Transformed plants of Nicotiana plumbaginifolia Viv. constitutively expressing nitrate reductase (35S-NR) or β-glucuronidase (35S-GUS) and untransformed controls were grown for two weeks in a CO2-enriched atmosphere. Whereas CO2 enrichment (1000 μl · l−1) resulted in an increase in the carbon (C) to nitrogen (N) ratio of both the tobacco lines grown in pots(More)
Transformed tobacco (Nicotiana tabacum L.) plants with varying activities of the key enzyme of ammonia assimilation, ferredoxin-glutamine-alpha-ketoglutarate aminotransferase (Fd-GOGAT; EC 1.4.7.1), were used to examine the roles of ammonium, glutamine (Gln) and alpha-ketoglutarate (alpha-KG) in the regulation of nitrate reductase (NR; EC 1.6.6.1)(More)
The metabolic cross-talk associated with re-assimilation of photorespiratory NH4+ was analysed in transformed tobacco (Nicotiana tabacum L.) plants with low activities of ferredoxin-dependent glutamine-alpha-ketoglutarate aminotransferase (Fd-GOGAT; EC 1.4.7.1). Amounts of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) protein and(More)
Untransformed maize and tobacco plants and tobacco plants constitutively expressing nitrate reductase were grown with sufficient NO(3)- to support maximal growth. Four days prior to treatment the tobacco plants were deprived of nitrogen. Excised maize leaves and tobacco leaf discs were fed with either 40 mM KNO(3) or 40 mM KCl (control) in the light.(More)
Plants have developed adaptive responses allowing them to cope with nitrogen (N) fluctuation in the soil and maintain growth despite changes in external N availability. Nitrate is the most important N form in temperate soils. Nitrate uptake by roots and its transport at the whole-plant level involves a large panoply of transporters and impacts plant(More)
NRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.7 mutation for the seed metabolism. This work describes a new phenotype for the nrt2.7-2 mutant allele in the Wassilewskija accession, which exhibited a(More)
In higher plants, the PII protein is a nuclear-encoded plastid protein that regulates the activity of a key enzyme of arginine biosynthesis. We have previously observed that Arabidopsis PII mutants are more sensitive to nitrite toxicity. Using intact chloroplasts isolated from Arabidopsis leaves and (15)N-labelled nitrite we show that a light-dependent(More)
Glutamate (Glu) dehydrogenase (GDH) catalyses the reversible amination of 2-oxoglutarate for the synthesis of Glu using ammonium as a substrate. This enzyme preferentially occurs in the mitochondria of companion cells of a number of plant species grown on nitrate as the sole nitrogen source. For a better understanding of the controversial role of GDH either(More)
The metabolic cross-talk associated with re-assimilation of photorespiratory NH4 + was analysed in transformed tobacco (Nicotiana tabacum L.) plants with low activities of ferredoxin-dependent glutamine–α-ketoglutarate aminotransferase (Fd-GOGAT; EC 1.4.7.1). Amounts of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) protein and(More)