Learn More
In eukaryotes, the high-mobility-group (HMG) nuclear factors are highly conserved throughout evolution and are divided into three families, including HGMB, characterized by an HMG box domain. Some HMGB factors are DNA structure specific and preferentially interact with distorted DNA sequences, trigger DNA bending, and hence facilitate the binding of(More)
During the complex life cycle of Plasmodium falciparum, divided between mosquito and human hosts, the regulation of morphologic changes implies a fine control of transcriptional regulation. Transcriptional control, however, and in particular its molecular actors, transcription factors and regulatory motifs, are as yet poorly described in Plasmodium. In(More)
During the complex life cycle of Plasmodium falciparum, through mosquito and human, the erythrocytic cycle is responsible for malarial disease and transmission. The regulation of events that occur during parasite development, such as proliferation and differentiation, implies a fine control of transcriptional activities that in turn governs the expression(More)
Here we describe the first real-time study of nuclear protein interaction with a composite DNA regulatory region. We studied the interplay between the three target sites of the negative regulatory element (NRE) of HIV-1 LTR, comprising a noncanonical GATA site overlapping two negative regulatory regions, USF and NFIL-6, and their corresponding transcription(More)
Relative affinities of transcriptional regulatory elements for their respective factor have been essentially studied by bandshift analysis. Here we report a real-time study of factor/DNA interactions using a surface plasmon resonance approach and further characterization of recovered proteins involved in this interaction. For this purpose, human GATA-3,(More)
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and first infect the liver of their mammalian host, where they develop as liver stages before the onset of erythrocytic infection and malaria symptoms. Sporozoite entry into hepatocytes is an attractive target for anti-malarial prophylactic strategies but remains poorly understood at the(More)
The minus DNA strand of HIV-1 presents an open reading frame that is complementary to the HIV-1 envelope messenger, is highly conserved among HIV-1 isolates, and may encode a hydrophobic protein. In previous studies, the antisense transcript has been identified both in various HIV-infected cell lines and in leukocytes of HIV-1(+) patients. The expression of(More)
Feline immunodeficiency virus (FIV) is a lentivirus inducing an AIDS-like disease in cats, thus providing an interesting model for AIDS study. FIV and HIV-1 possess a similar genomic arrangement of structural and non-structural genes, whose expression is regulated by related genetic mechanisms. On the DNA strand complementary to the HIV-1 envelope(More)
Plasmodium sporozoites are transmitted by mosquitoes and first infect hepatocytes of their mammalian host, wherein they develop as liver stages, surrounded by the parasitophorous vacuole membrane (PVM). The parasite must rapidly adapt to its changing environment after switching host. Shortly after invasion, the PVM is remodelled by insertion of essential(More)