Sylvia Colliec-Jouault

Learn More
The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from(More)
Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of(More)
Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and(More)
Mesenchymal stem cells (MSCs) are considered as an attractive source of cells for cartilage engineering due to their availability and capacity for expansion and multipotency. Differentiation of MSC into chondrocytes is crucial to successful cartilage regeneration and can be induced by various biological agents, including polysaccharides that participate in(More)
Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to(More)
The exopolysaccharide (EPS) HE800 is a marine-derived polysaccharide (from 8 × 105 to 1.5 × 106 g mol−1) produced by Vibrio diabolicus and displaying original structural features close to those of glycosaminoglycans. In order to confer new biological activities to the EPS HE800 or to improve them, structural modifications need to be performed. In(More)
Low-molecular-weight fucoidan (LMWF) is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial(More)
GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like(More)
Alteromonas macleodii subsp. fijiensis biovar deepsane is a deep-sea ecotype exopolysaccharide-producing bacteria isolated from the polychaete annelid Alvinella pompejana. The high molecular weight biopolymer HYD657 produced by this strain, is the first marine exopolysaccharide (EPS) to be commercialized for cosmetic use. Depolymerization methods are(More)
Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was(More)