Learn More
We present a programming-by-demonstration framework for generically extracting the relevant features of a given task and for addressing the problem of generalizing the acquired knowledge to different contexts. We validate the architecture through a series of experiments, in which a human demonstrator teaches a humanoid robot simple manipulatory tasks. A(More)
We presented and evaluated an approach based on HMM, GMR, and dynamical systems to allow robots to acquire new skills by imitation. Using HMM allowed us to get rid of the explicit time dependency that was considered in our previous work [12], by encapsulating precedence information within the statistical representation. In the context of separated learning(More)
We present an approach to teach incrementally human gestures to a humanoid robot. By using active teaching methods that puts the human teacher "in the loop" of the robot's learning, we show that the essential characteristics of a gesture can be efficiently transferred by interacting socially with the robot. In a first phase, the robot observes the user(More)
This paper develops a general policy for learning the relevant features of an imitation task. We restrict our study to imitation of manipulative tasks or gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we(More)
Robot programming by demonstration (PbD) aims at developing adaptive and robust controllers to enable the robot to learn new skills by observing and imitating a human demonstration. While the vast majority of PbD works has focused on systems that learn a specific subset of tasks, our work explores the problem of recognizing, generalizing, and reproducing(More)
We present a probabilistic architecture for solving generically the problem of extracting the task constraints through a programming by demonstration (PbD) framework and for generalizing the acquired knowledge to various situations. In previous work, we proposed an approach based on Gaussian mixture regression (GMR) to find a controller for the robot(More)
We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and(More)
We present an approach allowing a robot to acquire new motor skills by learning the couplings across motor control variables. The demonstrated skill is first encoded in a compact form through a modified version of Dynamic Movement Primitives (DMP) which encapsulates correlation information. Expectation-Maximization based Reinforcement Learning is then used(More)