Syed Shakib Sarwar

Learn More
Large-scale artificial neural networks have shown significant promise in addressing a wide range of classification and recognition applications. However, their large computational requirements stretch the capabilities of computing platforms. The fundamental components of these neural networks are the neurons and its synapses. The core of a digital hardware(More)
Multilayered artificial neural networks have found widespread utility in classification and recognition applications. The scale and complexity of such networks together with the inadequacies of general purpose computing platforms have led to a significant interest in the development of efficient hardware implementations. In this work, we focus on designing(More)
Artificial neural networks (NN) have shown a significant promise in difficult tasks like image classification or speech recognition. Even well-optimized hardware implementations of digital NNs show significant power consumption. It is mainly due to non-uniform pipeline structures and inherent redundancy of numerous arithmetic operations that have to be(More)
Neuromorphic algorithms are being increasingly deployed across the entire computing spectrum from data centers to mobile and wearable devices to solve problems involving recognition, analytics, search and inference. For example, large-scale artificial neural networks (popularly called deep learning) now represent the state-of-the art in a wide and(More)
Neuromorphic algorithms are being increasingly deployed across the entire computing spectrum from data centers to mobile and wearable devices to solve problems involving recognition, analytics, search and inference. For example, large-scale artificial neural networks (popularly called deep learning) now represent the state-of-the art in a wide and(More)
Convolutional Neural Networks (CNN) are being increasingly used in computer vision for a wide range of classification and recognition problems. However, training these large networks demands high computational time and energy requirements; hence, their energy-efficient implementation is of great interest. In this work, we reduce the training complexity of(More)
In this paper, we propose a Spin-Torque (ST) based sensing scheme that can enable energy efficient multi-bit long distance interconnect architectures. Current-mode interconnects have recently been proposed to overcome the performance degradations associated with conventional voltage mode Copper (Cu) interconnects. However, the performance of current mode(More)
  • 1