Syed Ikram A. Tirmizi

Learn More
Quartic non-polynomial splines are used to develop a new numerical method for computing approximations to the solution of a system of third-order boundary-value problems associated with obstacle, unilateral, and contact problems. It is shown that the new method gives approximations, which are better than those produced by other collocation,(More)
In this chapter, non-polynomial spline functions are applied to develop numerical methods for obtaining smooth approximations for the following BVP:     6 , , , / , D y x f x y a x b D d dx     (3.1) subject to the boundary conditions: 2 4 0 2 4 2 4 0 2 4 , , , , ,. y a A D y a A D y a A y b B D y b B D y b B       (3.2) where   y x and (,)(More)
In this article, using non-polynomial cubic spline we develop the classes of methods for the numerical solution of singularly perturbed two-point boundary-value problems. The purposed methods are secondorder and fourth-order accurate and applicable to problems both in singular and non-singular cases.Numerical results are given to illustrate the efficiency(More)
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will(More)
A quadratic non-polynomial spline functions based method is developed to find approximations solution to a system of second-order boundary-value problems associated with obstacle, unilateral, and contact problems. The present approach has less computational cost and gives better approximations than those produced by other collocation, finite-difference and(More)