Sws McKeever

Learn More
The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the(More)
The use of thermoluminescence as a method for the dosimetry of ionising radiation has been established for many decades and has been unquestionably successful. It is therefore difficult to imagine how any new technique could easily supplant it. Perhaps optically stimulated luminescence dosimetry should not be characterised as an entirely new technique, but(More)
This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome(More)
This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced(More)
In this paper we present the concept of a robotic instrument for in situ luminescence dating of near-surface sediments on Mars. The scientific objectives and advantages to be gained from the development of such an instrument are described, and the challenges presented by the Mars surface environment to the design and operation of the instrument are outlined.
What are the new frontiers' facing us in the new millennium with respect to luminescence dosimetry? I suggest that the first is in methodology. The fast, sensitive optically stimulated luminescence (OSL) techniques developed recently have yielded the potential for rapid environmental monitoring, multiple measurements, dose imaging, and fast readout. New(More)
We have developed a system to irradiate samples and record radioluminescence (RL), optically stimulated luminescence (OSL), and thermoluminescence (TL) at temperatures ranging from -150 degrees C to 200 degrees C. The system consists of a cryostat, an irradiation/stimulation unit fitted with an X-ray tube (40 kV Moxtek) and a quartz window for optical(More)
Optically stimulated luminescence (OSL) properties of dental enamel are discussed with a view to the development of an in vivo dose assessment technique for medical triage following a radiological/nuclear accident or terrorist event. In the OSL technique, past radiation exposure is assessed by stimulating the sample with light of one wavelength and(More)
Several materials were tested as possible individual emergency dosimeters using Optically Stimulated Luminescence (OSL) as means to assess the exposure. Materials investigated included human nails, business cards and plastic buttons. The OSL properties of these materials were studied in comparison with those of teeth. Most samples revealed OSL signals only(More)
The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained(More)