Learn More
The massive surge in genome sequencing projects has opened our eyes to the overlooked biosynthetic potential and metabolic diversity of microorganisms. While traditional approaches have been successful at identifying many useful therapeutic agents from these organisms, new tactics are needed in order to exploit their true biosynthetic potential. Several(More)
Genetic manipulation of the LuxR-type quorum sensing regulator system in Burkholderia thailandensis caused a significant change in the metabolic profile: it led to activation of the thailandamide biosynthesis gene cluster, dramatically increased thailandamide production, and induced strong pigmentation. A novel polyketide metabolite, thailandamide lactone(More)
Modular type I polyketide synthases (PKS) produce a vast array of bacterial metabolites with highly diverse biological functions. Notably, all known polyketides were isolated from aerobic bacteria, and yet no example has been reported for strict anaerobes. In this study we explored the diversity and distribution of PKS genes in the genus Clostridium. In(More)
Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a(More)
HT29 cells endogenously express the cystic fibrosis transmembrane conductance regulator (CFTR) and have been used previously as a model to examine cellular regulation of CFTR expression and chloride secretory function. Homologous recombination has been used to specifically disrupt CFTR transcription in the HT29-18-C1 subclone. Experiments demonstrate(More)
BACKGROUND End-stage renal disease is accompanied by functional and structural vascular abnormalities. The objective of this study was to characterize vascular function in a large cohort of patients with end-stage renal disease, using noninvasive physiological measurements, and to correlate function with demographic and clinical factors. METHODS AND(More)
The Pseudomonas putida KT2440 strain was engineered in order to produce anthranilate (oAB, ortho-aminobenzoate), a precursor of the aromatic amino acid tryptophan, from glucose as sole carbon source. To enable the production of the metabolic intermediate oAB, the trpDC operon encoding an anthranilate phosphoribosyltransferase (TrpD) and an indole-3-glycerol(More)
  • 1