Swaine L. Chen

Learn More
Urinary tract infections (UTIs) have complex dynamics, with uropathogenic Escherichia coli (UPEC), the major causative agent, capable of colonization from the urethra to the kidneys in both extracellular and intracellular niches while also producing chronic persistent infections and frequent recurrent disease. In mouse and human bladders, UPEC invades the(More)
Complementary DNAs for two mutant thyroid hormone alpha1 receptors (TR alpha1) were isolated from hepatocellular carcinomas of two patients. Sequence analyses of the complementary DNAs showed a single Val390Ala and double Pro398Ser/Glu350Lys mutations in mutants H and L, respectively. We characterized their hormone-binding, DNA-binding, and dominant(More)
Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we(More)
Helicobacter pylori infection is associated with gastric adenocarcinoma in some humans, especially those that develop an antecedent condition, chronic atrophic gastritis (ChAG). Gastric epithelial progenitors (GEPs) in transgenic gnotobiotic mice with a ChAG-like phenotype harbor intracellular collections of H. pylori. To characterize H. pylori adaptations(More)
UNLABELLED Uropathogenic Escherichia coli (UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by the fim operon in nearly all E. coli. Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium.(More)
Creation of defined genetic mutations is a powerful method for dissecting mechanisms of bacterial disease; however, many genetic tools are only developed for laboratory strains. We have designed a modular and general negative selection strategy based on inducible toxins that provides high selection stringency in clinical Escherichia coli and Salmonella(More)
Streptococcus agalactiae (group B Streptococcus) is a common commensal strain in the human gastrointestinal tract that can also cause invasive disease in humans and other animals. We report here the complete genome sequence of S. agalactiae SG-M1, a serotype III, multilocus sequence type 283 strain, isolated from a Singaporean patient suffering from(More)
Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by(More)
Studies of Uropathogenic Escherichia coli (UPEC) pathogenesis have relied heavily on genetic manipulation to understand virulence factors. We applied a recently reported positive-negative selection system to create a series of unmarked, scarless FimH mutants that show identical phenotypes to previously reported marked FimH mutants; these are now improved(More)