Learn More
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms in current use. DE operates through similar computational steps as employed by a standard evolutionary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the currentgeneration population members with the scaled differences(More)
Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. It has reportedly outperformed a few evolutionary algorithms (EAs) and other search heuristics like the particle swarm optimization (PSO) when tested over both benchmark and realworld problems. DE, however, is not completely free from(More)
Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of(More)
2 We thankfully acknowledge the contribution of the following friends, colleagues and students in making the problem set complete: A comprehensive account of some real world optimization problems have been presented in details. These problems can be used to evaluate the performance of different stochastic optimization algorithm. After all, every(More)
Since the beginning of the nineteenth century, a significant evolution in optimization theory has been noticed. Classical linear programming and traditional non-linear optimization techniques such as Lagrange’s Multiplier, Bellman’s principle and Pontyagrin’s principle were prevalent until this century. Unfortunately, these derivative based optimization(More)
Differential evolution (DE) has emerged as one of the fast, robust, and efficient global search heuristics of current interest. This paper describes an application of DE to the automatic clustering of large unlabeled data sets. In contrast to most of the existing clustering techniques, the proposed algorithm requires no prior knowledge of the data to be(More)
Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks, in these days, require fast and accurate partitioning of huge datasets, which may come with a variety of attributes or(More)
Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. In this paper we present two new, improved variants of DE. Performance comparisons of the two proposed methods are provided against (a) the original DE, (b) the canonical particle swarm optimization (PSO), and (c) two PSO-variants. The(More)
This article introduces a scheme for clustering complex and linearly non-separable datasets, without any prior knowledge of the number of naturally occurring groups in the data. The proposed method is based on a modified version of classical Particle Swarm Optimization (PSO) algorithm, known as the Multi-Elitist PSO (MEPSO) model. It also employs a(More)
Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a global optimization algorithm of current interest for distributed optimization and control. BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA has already drawn the attention of researchers because of its efficiency in solving real-world optimization(More)