Swadhin Chandra Jana

Learn More
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal(More)
Cilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that(More)
Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/βTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/βTrCP substrate binding and targeting for degradation is normally regulated by(More)
Centrioles are microtubule (MT)-based cylinders that form centrosomes and can be modified into basal bodies that template the axoneme, the ciliary MT skeleton. These MT-based structures are present in all branches of the eukaryotic tree of life, where they have important sensing, motility and cellular architecture-organizing functions. Moreover, they are(More)
Structurally diverse sensory cilia have evolved from primary cilia, a microtubule-based cellular extension engaged in chemical and mechanical sensing and signal integration. The diversity is often associated with functional specialization. The olfactory receptor neurons in Drosophila, for example, express three distinct bipartite cilia displaying different(More)
Fluid mixing is a successful application of chaos. Theory anticipates the coexistence of order and disorder-symmetry and chaos-as well as self-similarity and multifractality arising from repeated stretching and folding. Experiments and computations, in turn, provide a point of confluence and a visual analog for chaotic behavior, multiplicative processes,(More)
An important feature of fertilization is the asymmetric inheritance of centrioles. In most species it is the sperm that contributes the initial centriole, which builds the first centrosome that is essential for early development. However, given that centrioles are thought to be exceptionally stable structures, the mechanism behind centriole disappearance in(More)
Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception,(More)
BACKGROUND Dynein Light Chain 1 (LC8) has been shown to pull down tubulin subunits, suggesting that it interacts with microtubules. RESULTS LC8 decorates microtubules in vitro and in Drosophila embryos, promotes microtubule assembly, and stabilizes microtubules both in vitro and in tissue-cultured cells. CONCLUSION LC8 stabilizes microtubules. (More)
Kinesin-2 is an anterograde motor involved in intraflagellar transport and certain other intracellular transport processes. It consists of two different motor subunits and an accessory protein KAP (kinesin accessory protein). The motor subunits were shown to bind each other through the coiled-coil stalk domains, while KAP was proposed to bind the tail(More)