Swadha Anand

Learn More
Polyketide synthases (PKSs) catalyze biosynthesis of a diverse family of pharmaceutically important secondary metabolites. Bioinformatics analysis of sequence and structural features of PKS proteins plays a crucial role in discovery of new natural products by genome mining, as well as in design of novel secondary metabolites by biosynthetic engineering. The(More)
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites(More)
Modular polyketide synthases are multifunctional megasynthases which biosynthesize a variety of secondary metabolites using various combinations of dehydratase (DH), ketoreductase (KR) and enoyl-reductase (ER) domains. During the catalysis of various reductive steps these domains act on a substrate moiety which is covalently attached to the(More)
Insights into the structure and dynamics of modular polyketide synthases (PKS) are essential for understanding the mechanistic details of the biosynthesis of a large number of pharmaceutically important secondary metabolites. The crystal structures of the KS-AT di-domain from erythromycin synthase have revealed the relative orientation of various catalytic(More)
Polyketide synthases (PKSs) are huge multi-enzymatic protein complexes involved in the biosynthesis of one of the largest families of bioactive natural products, namely polyketides. The specificity of interactions between various catalytic domains of these megasynthases is one of the pivotal factors which control the precise order in which the extender(More)
Secondary metabolites belonging to polyketide and nonribosomal peptide families constitute a major class of natural products with diverse biological functions and a variety of pharmaceutically important properties. Experimental studies have shown that the biosynthetic machinery for polyketide and nonribosomal peptides involves multi-functional megasynthases(More)
We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid(More)
  • 1