Swadha Anand

Learn More
Polyketide synthases (PKSs) catalyze biosynthesis of a diverse family of pharmaceutically important secondary metabolites. Bioinformatics analysis of sequence and structural features of PKS proteins plays a crucial role in discovery of new natural products by genome mining, as well as in design of novel secondary metabolites by biosynthetic engineering. The(More)
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites(More)
Modular polyketide synthases are multifunctional megasynthases which biosynthesize a variety of secondary metabolites using various combinations of dehydratase (DH), ketoreductase (KR) and enoyl-reductase (ER) domains. During the catalysis of various reductive steps these domains act on a substrate moiety which is covalently attached to the(More)
Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few(More)
Secondary metabolites belonging to polyketide and nonribosomal peptide families constitute a major class of natural products with diverse biological functions and a variety of pharmaceutically important properties. Experimental studies have shown that the biosynthetic machinery for polyketide and nonribosomal peptides involves multi-functional megasynthases(More)
  • 1