Svetlana V Tishchenko

Learn More
In bacterial ribosomes, the small (30S) ribosomal subunit is composed of 16S rRNA and 21 distinct proteins. Ribosomal protein S15 is of particular interest because it binds primarily to 16S rRNA and is required for assembly of the small subunit and for intersubunit association, thus representing a key element in the assembly of a whole ribosome. Here we(More)
The L1 protuberance of the 50S ribosomal subunit is implicated in the release/disposal of deacylated tRNA from the E site. The apparent mobility of this ribosomal region has thus far prevented an accurate determination of its three-dimensional structure within either the 50S subunit or the 70S ribosome. Here we report the crystal structure at 2.65 A(More)
All large structured RNAs contain hairpin motifs made of a stem closed by several looped nucleotides. The most frequent loop motif is the UUCG one. This motif belongs to the tetraloop family and has the peculiarity of being highly thermodynamically stable. Here, we report the first crystal structure of two UUCG tetraloops embedded in a larger RNA-protein(More)
The crystal structure of ribosomal protein S8 bound to its target 16 S rRNA from a hyperthermophilic archaeon Methanococcus jannaschii has been determined at 2.6 A resolution. The protein interacts with the minor groove of helix H21 at two sites located one helical turn apart, with S8 forming a bridge over the RNA major groove. The specificity of binding is(More)
The RNA-binding ability of ribosomal protein L1 is of profound interest, since L1 has a dual function as a ribosomal structural protein that binds rRNA and as a translational repressor that binds its own mRNA. Here, we report the crystal structure at 2.6 A resolution of ribosomal protein L1 from the bacterium Thermus thermophilus in complex with a 38 nt(More)
S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and(More)
2'-5'-Oligoadenylate synthetases (OASs) produce the second messenger 2'-5'-oligoadenylate, which activates RNase L to induce an intrinsic antiviral state. We report on the crystal structures of catalytic intermediates of OAS1 including the OAS1·dsRNA complex without substrates, with a donor substrate, and with both donor and acceptor substrates. Combined(More)
The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex(More)
Hybrid complexes of the ribosomal proteins, TL4 and TL5, from Thermus thermophilus with 5 S ribosomal RNA from Escherichia coli and Bacillus stearothermophilus have been prepared. There was no competition between the two proteins for the binding sites. Stoichiometry of 5 S RNA binding for both proteins was 1:1 (protein/RNA). The TL4 protein competed with(More)
The crystal structure of ribosomal protein L1 from the archaeon Methanococcus thermolithotrophicus has been determined at 2.7 A resolution. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 67.0, b = 70.1, c = 106.3 A and two molecules per asymmetric unit. The structure was solved by the molecular-replacement method with AMoRe(More)