Svetlana Khasminskaya

  • Citations Per Year
Learn More
Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators because of its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45 eV makes diamond a suitable material for integrated optics because of broadband transparency(More)
We demonstrate how light from an electrically driven carbon nanotube can be coupled directly into a photonic waveguide architecture. Waferscale, broadband sources are realized integrated with nanophotonic circuits allowing for propagation of light over centimeter distances. Moreover, we show that the spectral properties of the emitter can be controlled(More)
A novel instrument is presented, which permits studies on singly charged free nanoparticles in the diameter range from 1 to 30 nm using synchrotron radiation in the soft x-ray regime. It consists of a high pressure nanoparticle source, a high efficiency nanoparticle beam inlet, and an electron time-of-flight spectrometer suitable for probing surface and(More)
Wide bandgap dielectrics are attractive materials for the fabrication of photonic devices because they allow broadband optical operation and do not suffer from free-carrier absorption. Here we show that polycrystalline diamond thin films deposited by chemical vapor deposition provide a promising platform for the realization of large scale integrated(More)
Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are(More)
We combine on-chip single-walled carbon nanotubes (SWNTs) emitters with directional coupling devices as fundamental building blocks for carbon photonic systems. These devices are essential for studying the emission properties of SWNTs in the few photon regime for future applications in on-chip quantum photonics. The combination of SWNTs with on-chip beam(More)
Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical(More)
  • 1