Learn More
BACKGROUND We present a statistical method of analysis of biological networks based on the exponential random graph model, namely p2-model, as opposed to previous descriptive approaches. The model is capable to capture generic and structural properties of a network as emergent from local interdependencies and uses a limited number of parameters. Here, we(More)
MOTIVATION High-throughput molecular genetics methods allow the collection of data about the expression of genes at different time points and under different conditions. The challenge is to infer gene regulatory interactions from these data and to get an insight into the mechanisms of genetic regulation. RESULTS We propose a model for genetic regulatory(More)
In stroke, gene transcription plays a central role in processes such as neuroinflammation and neuroregeneration. To predict new transcriptional regulatory mechanisms in cerebral ischemia, we applied a computational approach combining two kinds of information: the results of a microarray analysis in a mouse model of stroke and in silico detection of(More)
Background: Classification of human tumors into distinguishable entities is preferentially based on clinical, pathohistological, enzyme-based histochemical, immunohistochemical, and in some cases cytogenetic data. This classification system still provides classes containing tumors that show similarities but differ strongly in important aspects, e.g.(More)
The most fatal and prevalent form of malaria is caused by the bloodborne pathogen Plasmodium falciparum (henceforth P.f). Annually, approximately three million people died of malaria. Despite P.f devastating effect globally, the vast majority of its proteins have not been characterized experimentally. In this work, we provide computational insight that(More)
Biological systems and processes are highly dynamic. To gain insights into their functioning time-resolved measurements are necessary. Time-resolved gene expression data captures temporal behaviour of the genes genome-wide under various biological conditions: in response to stimuli, during cell cycle, differentiation or developmental programs. Dissecting(More)
  • 1