Svend-Jonas Schelhorn

Learn More
In this paper we present a new approach to enhance information extraction from social media that relies upon the geographical relations between twitter data and flood phenomena. We use specific geographical features like hydrological data and digital elevation models to analyze the spatiotemporal distribution of georeferenced twitter messages. This approach(More)
The identification of elements at risk is an essential part in hazard risk assessment. Especially for recurring natural hazards like floods, an updated database with information about elements exposed to such hazards is fundamental to support crisis preparedness and response activities. However, acquiring and maintaining an up-to-date database with elements(More)
Recent research has shown that social media platforms like twitter can provide relevant information to improve situation awareness during emergencies. Previous work is mostly concentrated on the classification and analysis of tweets utilizing crowdsourcing or machine learning techniques. However, managing the high volume and velocity of social media(More)
  • 1