Sven U Heinrich

Learn More
We have investigated how the transmembrane (TM) domain of a membrane protein is cotranslationally integrated into the endoplasmic reticulum. We demonstrate that the Sec61p channel allows the TM domain to bypass the barrier posed by the polar head groups of the lipid bilayer and come into contact with the hydrophobic interior of the membrane. Together with(More)
As proteins are integrated into the membrane of the endoplasmic reticulum, some hydrophilic polypeptide segments are transported through the translocation channel, others remain in the cytosol, and hydrophobic transmembrane sequences are released into the lipid phase. We have addressed the molecular mechanism by which these events occur. We demonstrate that(More)
While membrane insertion of single-spanning membrane proteins into the endoplasmic reticulum (ER) is relatively well understood, it is unclear how multi-spanning proteins integrate. We have investigated the cotranslational ER integration of a double-spanning protein that is derived from leader peptidase. Both transmembrane (TM) segments are inserted into(More)
Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the(More)
Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change(More)
The mammalian Sec61 complex forms a protein translocation channel whose function depends upon its interaction with the ribosome and with membrane proteins of the endoplasmic reticulum (ER). To study these interactions, we determined structures of "native" ribosome-channel complexes derived from ER membranes. We find that the ribosome is linked to the(More)
  • 1