Learn More
Motoneurons are important for regulating the function and properties of skeletal muscle. In the present study high-density oligonucleotide arrays have been used to compare gene expression in innervated and six-days denervated NMRI mouse skeletal muscle. To avoid looking at genes mainly participating in the process of atrophy, both hind-limb muscles(More)
Transgenic expression of gastrin and EGF receptor ligands stimulates islet neogenesis in adult mice, significantly increasing islet mass. The present study aimed to determine whether pharmacological treatment with gastrin and EGF can significantly stimulate beta-cell regeneration in chronic, severe insulin-dependent diabetes. Diabetes was induced by(More)
We recently refined the in vitro motility assay for studies of actomyosin function to achieve rectified myosin induced sliding of actin filaments. This paves the way, both for detailed functional studies of actomyosin and for nanotechnological applications. In the latter applications it would be desirable to use actin filaments for transportation of cargoes(More)
BACKGROUND The purpose of this study was to investigate awareness among nurses regarding their new role as reporters of adverse drug reactions in Sweden and factors that may influence reporting by nurses. METHODS In 2007, all nurses were included in the adverse drug reaction reporting scheme in Sweden. A questionnaire was sent to 753 randomly selected(More)
PURPOSE Socioeconomic factors have been suggested to influence the prescribing of newer and more expensive drugs. In the present study, individual and health care provider factors were studied in relation to the prevalence of differently priced drugs. METHODS Register data for dispensed drugs were retrieved for 18 486 individuals in a county council in(More)
Biological molecular motors that are constrained so that function is effectively limited to predefined nanosized tracks may be used as molecular shuttles in nanotechnological applications. For these applications and in high-throughput functional assays (e.g., drug screening), it is important that the motors propel their cytoskeletal filaments(More)
We have previously shown that selective heavy meromyosin (HMM) adsorption to predefined regions of nanostructured polymer resist surfaces may be used to produce a nanostructured in vitro motility assay. However, actomyosin function was of lower quality than on conventional nitrocellulose films. We have therefore studied actomyosin function on differently(More)
The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies(More)
We have previously described the efficient guidance and unidirectional sliding of actin filaments along nanosized tracks with adsorbed heavy meromyosin (HMM; myosin II motor fragment). In those experiments, the tracks were functionalized with trimethylchlorosilane (TMCS) by chemical vapor deposition (CVD) and surrounded by hydrophilic areas. Here we first(More)