Learn More
This paper presents a novel human-like learning controller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning(More)
✦ Abstract—In this paper, we present an efficient 3D object recognition and pose estimation approach for grasping procedures in cluttered and occluded environments. In contrast to common appearance-based approaches, we rely solely on 3D geometry information. Our method is based on a robust geometric descriptor, a hashing technique and an efficient,(More)
— Enabling robots to safely interact with humans is an essential goal of robotics research. The developments achieved over the last years in mechanical design and control made it possible to have active cooperation between humans and robots in rather complex situations. For this, safe robot behavior even under worst-case situations is crucial and forms also(More)
In this paper we describe a system for aerial manipulation composed of a helicopter platform and a fully actuated seven Degree of Freedom (DoF) redundant industrial robotic arm. We present the first analysis of such kind of systems and show that the dynamic coupling between helicopter and arm can generate diverging oscillations with very slow frequency(More)
This paper describes a novel method for motion generation and reactive collision avoidance. The algorithm performs arbitrary desired velocity profiles in absence of external disturbances and reacts if virtual or physical contact is made in a unified fashion with a clear physically interpretable behavior. The method uses physical analogies for defining(More)
In this paper we present a novel control architecture for realizing human-friendly behaviors and intuitive state based programming. The design implements strategies that take advantage of sophisticated soft-robotics features for providing reactive, robust, and safe robot actions in dynamic environments. Quick access to the various functionality of the robot(More)
Enabling robots to safely interact with humans is an essential goal of robotics research. The developments achieved over the last years in mechanical design and control made it possible to have active cooperation between humans and robots in rather complex situations. In these terms, safe behavior of the robot even under worst-case situations is crucial and(More)
Because bin-picking effectively mirrors great challenges in robotics, it has been a relevant robotic showpiece application for several decades. In this paper we describe the computer vision algorithms in combination with the sophisticated control schemes of the robot and demonstrate a reliable and robust solution to the chosen problem. This paper approaches(More)
The increasing ability of industrial robots to perform complex tasks in collaboration with humans requires more capable ways of communication and interaction. Traditional systems use separate interfaces such as touchscreens or control panels in order to operate the robot, or to communicate its state and prospective actions to the user. Transferring human(More)
In this overview paper we present current work on safety analysis for physical Human-Robot Interaction (pHRI) and motion control methods for robotic co-workers. In particular, we introduce the analysis tools for investigating the potential injury a human would suffer during robot-human impacts. Furthermore, we outline our concept for establishing a(More)