Sven Månsson

Learn More
Pyruvate is included in the energy production of the heart muscle and is metabolized into lactate, alanine, and CO(2) in equilibrium with HCO(3) (-). The aim of this study was to evaluate the feasibility of using (13)C hyperpolarization enhanced MRI to monitor pyruvate metabolism in the heart during an ischemic episode. The left circumflex artery of pigs (4(More)
A new strategy for a quantitative measurement of regional pulmonary ventilation using hyperpolarized helium-3 (3He) MRI has been developed. The method employs the build-up of the signal intensity after a variable number of (3)He breaths. A mathematical model of the signal dynamics is presented, from which the local ventilation, defined as the fraction of(More)
High nuclear spin polarization of (13)C was reached in organic molecules. Enhancements of up to 10(4), compared to thermal polarization at 1.5 T, were achieved using the parahydrogen-induced polarization technique in combination with a field cycling method. While parahydrogen has no net polarization, it has a high spin order, which is retained when hydrogen(More)
A (13)C-enriched water-soluble compound (bis-1,1-(hydroxymethyl)-1-(13)C-cyclopropane-D(8)), with a (13)C-concentration of approximately 200 mM, was hyperpolarized to approximately 15% using dynamic nuclear polarization, and then used as a contrast medium (CM) for contrast-enhanced magnetic resonance angiography (CE-MRA). The long relaxation times (in(More)
Cerebral perfusion was assessed with 13C MRI in a rat model after intravenous injections of the 13C-labeled compound bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-D8 in aqueous solutions hyperpolarized by dynamic nuclear polarization (DNP). Since the tracer acted as a direct signal source, several of the problems associated with techniques based on traditional(More)
A new technique for assessing tissue blood flow using hyperpolarized tracers, based on the fact that the magnetization of a hyperpolarized substance can be destroyed permanently, is described. Assessments of blood flow with this technique are inherently insensitive to arterial delay and dispersion, and allow for quantification of the transit time and(More)
The ability to quantify pulmonary diffusing capacity and perfusion using dynamic hyperpolarized (129)Xe NMR spectroscopy is demonstrated. A model of alveolar gas exchange was developed, which, in conjunction with (129)Xe NMR, enables quantification of average alveolar wall thickness, pulmonary perfusion, capillary diffusion length, and mean transit time.(More)
Interventional procedures in MRI can be performed preclinically using active or passive catheter-tracking methods. A novel passive nonproton technique is suggested that uses a catheter filled with a hyperpolarized (13)C contrast agent. A prototype three-lumen catheter was built with two closed lumens containing a flowing hyperpolarized (13)C contrast agent.(More)
Most approaches to arterial spin labelling (ASL) data analysis aim to provide a quantitative measure of the cerebral blood flow (CBF). This study, however, focuses on the measurement of the transfer time of blood water through the capillaries to the parenchyma (referred to as the capillary transfer time, CTT) as an alternative parameter to characterise the(More)
General Guidelines There are several options below for your MRI research topic. Many of the references can be found in b-space of this course website. Feel free to add papers, read textbooks on reserve in the Engineering library, etc. If you wish to cover another topic, please check first with me to make sure that the topic is appropriate. Details below. 1.(More)