Sven Månsson

Learn More
A (13)C-enriched water-soluble compound (bis-1,1-(hydroxymethyl)-1-(13)C-cyclopropane-D(8)), with a (13)C-concentration of approximately 200 mM, was hyperpolarized to approximately 15% using dynamic nuclear polarization, and then used as a contrast medium (CM) for contrast-enhanced magnetic resonance angiography (CE-MRA). The long relaxation times (in(More)
Dynamic nuclear polarization has enabled hyperpolarization of nuclei such as 13C and 15N in endogenous substances. The resulting high nuclear polarization makes it possible to perform subsecond 13C MRI. By using the dynamic nuclear polarization hyperpolarization technique, 10% polarization was obtained in an aqueous solution of 100 mM 13C-labeled urea,(More)
High nuclear spin polarization of (13)C was reached in organic molecules. Enhancements of up to 10(4), compared to thermal polarization at 1.5 T, were achieved using the parahydrogen-induced polarization technique in combination with a field cycling method. While parahydrogen has no net polarization, it has a high spin order, which is retained when hydrogen(More)
INTRODUCTION Children with type 1 diabetes have been identified as a risk group for non-alcoholic fatty liver disease (NAFLD). The aim was to compare total hepatic fat fraction and fat distribution across Couinaud segments in children with type 1 diabetes and controls and the relation of hepatic fat to plasma and anthropometric parameters. METHODS Hepatic(More)
The evolution of magnetic resonance imaging (MRI) has been astounding since the early 1980s, and a broad range of applications has emerged. To date, clinical imaging of nuclei other than protons has been precluded for reasons of sensitivity. However, with the recent development of hyperpolarization techniques, the signal from a given number of nuclei can be(More)
To evaluate the distortion and artifact area of metal in MR images and to compare artifact reduction using different metal artifact-reducing sequences in patients with metal-on-metal (MoM) and non-MoM total hip prostheses. Thirty-six MoM and 15 non-MoM prostheses were examined in a 1.5-T MR scanner using T1-weighted (T1-w) sequences: turbo spin echo (TSE)(More)
To apply and compare magnetic resonance imaging (MRI) metal artifact reducing sequences (MARS) including subtraction imaging after contrast application in patients with metal-on-metal (MoM) hip prostheses, investigate the prevalence and characteristics of periprosthetic abnormalities, as well as their relation with pain and risk factors. Fifty-two MoM(More)
Cerebral perfusion was assessed with 13C MRI in a rat model after intravenous injections of the 13C-labeled compound bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-D8 in aqueous solutions hyperpolarized by dynamic nuclear polarization (DNP). Since the tracer acted as a direct signal source, several of the problems associated with techniques based on traditional(More)
A new technique for assessing tissue blood flow using hyperpolarized tracers, based on the fact that the magnetization of a hyperpolarized substance can be destroyed permanently, is described. Assessments of blood flow with this technique are inherently insensitive to arterial delay and dispersion, and allow for quantification of the transit time and(More)
The ability to quantify pulmonary diffusing capacity and perfusion using dynamic hyperpolarized (129)Xe NMR spectroscopy is demonstrated. A model of alveolar gas exchange was developed, which, in conjunction with (129)Xe NMR, enables quantification of average alveolar wall thickness, pulmonary perfusion, capillary diffusion length, and mean transit time.(More)