Sven Jakobtorweihen

Learn More
Up to now, micelles composed of different surfactants (mixed micelles) are rarely studied with molecular methods. This is in contrast to their importance for pharmaceutical or industrial applications, where it is of great interest to predict the partition behavior for a large set of solutes (screening) within mixed micelles. This work is focused on(More)
The influence of silicalite-1 pores on the reaction equilibria and the selectivity of the propene metathesis reaction system in the temperature range between 300 and 600 K and the pressure range from 0.5 to 7 bars has been investigated with molecular simulations. The reactive Monte Carlo (RxMC) technique was applied for bulk-phase simulations in the(More)
Liposomes and micelles find various applications as potential solubilizers in extraction processes or in drug delivery systems. Thermodynamic and transport processes governing the interactions of different kinds of solutes in liposomes or micelles can be analyzed regarding the free energy profiles of the solutes in the system. However, free energy profiles(More)
The influence of flexible walls on the self-diffusion of CH4 in an isolated single walled carbon nanotube, as an example, is studied by molecular dynamics simulations. By simulating the carbon nanotube as a flexible framework we demonstrate that the flexibility has a crucial influence on self-diffusion at low loadings. We show how this influence can be(More)
We study the self-diffusion of simple gases inside single-walled carbon nanotubes at the zero-loading limit by molecular dynamics simulations. The host-framework flexibility influence is taken into account. In particular, we study the influences of nanotube size and temperature. For the carbon-nanotube radius-dependent self-diffusivities, a maximum is(More)
We describe a novel algorithm that includes the effect of host lattice flexibility into molecular dynamics simulations that use rigid lattices. It uses a Lowe-Andersen thermostat for interface-fluid collisions to take the most important aspects of flexibility into account. The same diffusivities and other properties of the flexible framework system are(More)
In order to efficiently calculate chemical equilibria of large molecules in a confined environment the reactive Monte Carlo technique is combined with the configurational-bias Monte Carlo approach. To prove that detailed balance is fulfilled the acceptance rule for this combination of particular Monte Carlo techniques is derived in detail. Notably, by using(More)
A novel algorithm for modeling the influence of the host lattice flexibility in molecular dynamics simulations is extended to chain-like molecules and mixtures. This technique, based on a Lowe-Andersen thermostat, maintains the advantages of both simplicity and efficiency. The same diffusivities and other properties of the flexible framework system are(More)
Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both(More)
Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is(More)