Learn More
An extracellular recording system has been designed for the detection of electrical cell signals using p-channel or n-channel field-effect transistor (FET) arrays with non-metallized gates. Signals from rat heart muscle cell were recorded by these devices and the results described on the basis of an equivalent circuit. This technique is sensitive enough to(More)
The use of field effect transistors (FETs) in biomedical research has been in rapid progression in recent years. The present study aims to demonstrate a quantitative use of these devices in pharmacological bioassays. FETs were made as a 4 x 4 matrix of gates with a width of 200 microm separating each gate. The surface of the FETs (silicon oxide), covered(More)
A field-effect transistor (FET) for recording extracellular signals from electrogenic cells is presented. The so-called floating gate architecture combines a complementary metal oxide semiconductor (CMOS)-type n-channel transistor with an independent sensing area. This concept allows the transistor and sensing area to be optimised separately. The devices(More)
An emerging number of micro- and nanoelectronics-based biosensors have been developed for non-invasive recordings of physiological cellular activity. The interface between the biological system and the electronic devices strongly influences the signal transfer between these systems. Little is known about the nanoscopic structure of the cell-sensor interface(More)
We present a label-free method for the detection of DNA hybridization, which is monitored by non-metallized silicon field-effect transistors (FET) in a microarray approach. The described method enables a fast and fully electronic readout of ex situ binding assays. The label-free detection utilizing the field-effect is based on the intrinsic charge of the(More)
A new approach to the design of field-effect transistor (FET) sensors and the use of these FETs in detecting extracellular electrophysiological recordings is reported. Backside contacts were engineered by deep reactive ion etching and a gas phase boron doping process of the holes using planar diffusion sources. The metal contacts were designed to fit on top(More)
The labelfree detection of nucleic acid sequences is one of the modern attempts to develop quick, cheap and miniaturised hand-held devices for the future genetic testing in biotechnology and medical diagnostics. We present an approach to detect the hybridisation of DNA sequences using electrolyte-oxide-semiconductor field-effect transistors (EOSFETs) with(More)
Tethered membranes have been proven during recent years to be a powerful and flexible biomimetic platform. We reported in a previous article on the design of a new architecture based on the self-assembly of a thiolipid on ultrasmooth gold substrates, which shows extremely good electrical sealing properties as well as functionality of a bilayer membrane.(More)
The electrical coupling of randomly migrating neurons from rat explant brain-stem slice cultures to the gates of non-metallized field-effect transistors (FETs) has been investigated. The objective of our work is the precise interpretation of extracellular recorded signal shapes in comparison to the usual patch-clamp protocols to evaluate the possible use of(More)
Microcontact printing (muCP) of extracellular matrix proteins is a fascinating approach to control cell positioning and outgrowth, which is essential in the development of applications ranging from cellular biosensors to tissue engineering. Microelectronic devices can be used to detect the activity from a large number of recording sites over the long term.(More)