Sven Dobner

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
We present a light source that is well adapted to both narrow- and broadband coherent Raman scattering (CRS) methods. Based on a single oscillator, the light source delivers synchronized broadband pulses via supercontinuum generation and narrowband, frequency-tunable pulses via four-wave mixing in a photonic crystal fiber. Seeding the four-wave mixing with(More)
We present a fiber-based optical parametric oscillator (FOPO) pumped by a fiber-coupled laser diode. The FOPO consisted of a photonic crystal fiber to convert the pump pulses via four-wave mixing and a dispersive resonator formed by a single-mode fiber. Via dispersion filtering, output pulses with a bandwidth of about 3 nm, a temporal duration of about 8 ps(More)
We present in-line interferometric femtosecond stimulated Raman scattering (II-FSRS), a new method to measure the spectral Raman intensity and phase over a broad spectral range, potentially in a single shot. An analytic model is developed, that excellently reproduces the measured spectra. Additionally, the performance of II-FSRS is directly compared in(More)
We present a purely optical method for background suppression in nonlinear spectroscopy based on linear interferometry. Employing an unbalanced Sagnac interferometer, an unprecedented background reduction of 17  dB over a broad bandwidth of 60  THz (2000  cm(-1)) is achieved and its application to femtosecond stimulated Raman scattering loss spectroscopy is(More)
We present the hyperspectral imaging capabilities of in-line interferometric femtosecond stimulated Raman scattering. The beneficial features of this method, namely, the improved signal-to-background ratio compared to other applicable broadband stimulated Raman scattering methods and the simple experimental implementation, allow for a rather fast(More)
We present the experimental realization of transverse mode conversion in an optical fiber via an optically induced long-period grating. The transient gratings are generated by femtosecond laser pulses, exploiting the Kerr effect to translate intensity patterns emerging from multimode interference into a spatial refractive index modulation. Since these(More)
  • 1