Learn More
Android's security framework has been an appealing subject of research in the last few years. Android has been shown to be vulnerable to application-level privilege escalation attacks, such as confused deputy attacks, and more recently, attacks by colluding applications. While most of the proposed approaches aim at solving confused deputy attacks , there is(More)
In this paper, we introduce a security framework for <i>practical and lightweight domain isolation</i> on Android to mitigate unauthorized data access and communication among applications of different trust levels (e.g., private and corporate). We present the design and implementation of our framework, <i>TrustDroid</i>, which in contrast to existing(More)
We present the first concept for full-fledged app sandboxing on stock Android. Our approach is based on application virtualization and process-based privilege separation to securely encapsulate untrusted apps in an isolated environment. In contrast to all related work on stock Android, we eliminate the necessity to modify the code of monitored apps, and(More)
Android security and privacy research has boomed in recent years, far outstripping investigations of other appified platforms. However, despite this attention, research efforts are fragmented and lack any coherent evaluation framework. We present a systematization of Android security and privacy research with a focus on the appification of software systems.(More)
Third-party libraries on Android have been shown to be security and privacy hazards by adding security vulnerabilities to their host apps or by misusing inherited access rights. Correctly attributing improper app behavior either to app or library developer code or isolating library code from their host apps would be highly desirable to mitigate these(More)
In this paper we tackle the challenge of providing a generic security architecture for the Android OS that can serve as a flexible and effective ecosystem to instantiate different security solutions. In contrast to prior work our security architecture, termed FlaskDroid, provides mandatory access control simultaneously on both Android's middleware and(More)
Cloud Computing is an emerging technology promising new business opportunities and easy deployment of web services. Much has been written about the risks and benefits of cloud computing in the last years. The literature on clouds often points out security and privacy challenges as the main obstacles, and proposes solutions and guidelines to avoid them.(More)
In this paper we present the design and implementation of a security framework that extends the reference monitor of the Android middleware and deploys a mandatory access control on Linux kernel (based on Tomoyo [9]) aiming at detecting and preventing application-level privilege escalation attacks at runtime. In contrast to existing solutions, our framework(More)
In contrast to the Android application layer, An-droid's application framework's internals and their influence on the platform security and user privacy are still largely a black box for us. In this paper, we establish a static runtime model of the application framework in order to study its internals and provide the first high-level classification of the(More)
Today's feature-rich smartphone apps intensively rely on access to highly sensitive (personal) data. This puts the user's privacy at risk of being violated by overly curious apps or libraries (like advertisements). Central app markets conceptually represent a first line of defense against such invasions of the user's privacy, but unfortunately we are still(More)