Svatoslav Stanek

Learn More
Positive solutions of nonlinear Dirichlet BVPs in ODEs with time and space singularities 40/2012 S. Simonov, H. Woracek Spectral multiplicity of selfadjoint Schrödinger operators on star-graphs with standard interface conditions 39/2012 Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations 36/2012 M. Bukal, E.(More)
In this paper, we discuss the existence of positive solutions to the singular Dirichlet boundary value problems (BVPs) for ordinary differential equations (ODEs) of the form u (t) + a t u (t) – a t 2 u(t) = f (t, u(t), u (t)), u(0) = 0, u(T) = 0, where a ∈ (–1, 0). The nonlinearity f (t, x, y) may be singular for the space variables x = 0 and/or y = 0.(More)
Positive solutions of nonlinear Dirichlet BVPs in ODEs with time and space singularities 40/2012 S. Simonov, H. Woracek Spectral multiplicity of selfadjoint Schrödinger operators on star-graphs with standard interface conditions 39/2012 Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations 36/2012 M. Bukal, E.(More)
Symmetry-free, p-robust equilibrated error indication for the hp-version of the FEM in almost incompressible linear elasticity Positive solutions of nonlinear Dirichlet BVPs in ODEs with time and space singularities 40/2012 S. Simonov, H. Woracek Spectral multiplicity of selfadjoint Schrödinger operators on star-graphs with standard interface conditions(More)