Suzanne Y. Guénette

Learn More
Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a(More)
The beta-amyloid precursor protein (APP) is a ubiquitous receptor-like molecule without a known function. However, the recent recognition that APP and Notch undergo highly similar proteolytic processing has suggested a potential signaling function for APP. After ligand binding, Notch is cleaved by the ADAM-17 metalloprotease followed by an intramembrane(More)
Four different genes have now been found to contain AD-associated mutations or polymorphisms. While the pathogenic mutations in the early-onset FAD genes, APP, PS1, and PS2 directly cause AD with nearly 100% penetrance, in a larger subset of AD cases with onset over 60 years (maximally for onset at 61-65 years), inheritance of the APOE4 allele confers(More)
We identified a novel human homologue of the rat FE65 gene, hFE65L, by screening the cytoplasmic domain of beta-amyloid precursor protein (beta PP) with the "interaction trap." The cytoplasmic domains of the beta PP homologues, APLP1 and APLP2 (amyloid precursor-like proteins), were also tested for interaction with hFE65L. APLP2, but not APLP1, was found to(More)
Targeted deletion of two members of the FE65 family of adaptor proteins, FE65 and FE65L1, results in cortical dysplasia. Heterotopias resembling those found in cobblestone lissencephalies in which neuroepithelial cells migrate into superficial layers of the developing cortex, aberrant cortical projections and loss of infrapyramidal mossy fibers arise in(More)
Members of the FE65 family of adaptor proteins, FE65, FE65L1, and FE65L2, bind the C-terminal region of the amyloid precursor protein (APP). Overexpression of FE65 and FE65L1 was previously reported to increase the levels of alpha-secretase-derived APP (APPs alpha). Increased beta-amyloid (A beta) generation was also observed in cells showing the(More)
The adaptor protein FE65 interacts with the beta-amyloid precursor protein (APP) via its C-terminal phosphotyrosine binding (PTB) domain and affects APP processing and Abeta production. Our previous data demonstrate that the apoE receptor ApoEr2 co-precipitated with APP and suggest that there are extracellular and intracellular interactions between these(More)
Alzheimer disease-associated beta-amyloid peptide is generated from its precursor protein APP. By using the yeast two-hybrid assay, here we identified HtrA2/Omi, a stress-responsive chaperone-protease as a protein binding to the N-terminal cysteinerich region of APP. HtrA2 coimmunoprecipitates exclusively with immature APP from cell lysates as well as mouse(More)
Two recent case-control studies have suggested a strong association of a missense polymorphism in exon 2 of the cathepsin D gene (CTSD) and Alzheimer disease (AD). However, these findings were not confirmed in another independent study. We analyzed this polymorphism in two large and independent AD study populations and did not detect an association between(More)