Suzanne R. Abrams

Learn More
Abscisic acid (ABA) regulates numerous developmental processes and adaptive stress responses in plants. Many ABA signaling components have been identified, but their interconnections and a consensus on the structure of the ABA signaling network have eluded researchers. Recently, several advances have led to the identification of ABA receptors and their(More)
Almost 2000 drought-responsive genes were identified in Arabidopsis thaliana under progressive soil drought stress using whole-genome oligonucleotide microarrays. Most of the drought-regulated genes recovered to normal expression levels by 3 h after rewatering. It has previously been shown that the abscisic acid (ABA) analogue (+)-8'-acetylene-ABA (PBI425)(More)
The phytohormone abscisic acid (ABA) regulates various physiological processes in plants. The molecular mechanisms by which this is achieved are not fully understood. Genetic approaches have characterized several downstream components of ABA signalling, but a receptor for ABA has remained elusive. Although studies indicate that several ABA response genes(More)
A highly selective and sensitive method for the simultaneous analysis of several plant hormones and their metabolites is described. The method combines high-performance liquid chromatography (HPLC) with positive and negative electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to quantify a broad range of chemically and structurally diverse(More)
Levels of endogenous abscisic acid (ABA) are changed dynamically in response to environmental conditions. The ABA 8'-hydroxylase is a key enzyme in ABA catabolism and is encoded by CYP707A genes. In this study, we examined physiological roles of Arabidopsis (Arabidopsis thaliana) CYP707As in the plant's response to changes in humidity. The cyp707a1 and(More)
The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (-)-(R)-ABA, an enantiomer of the natural(More)
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites(More)
A glucosyltransferase (GT) of Arabidopsis, UGT71B6, recognizing the naturally occurring enantiomer of abscisic acid (ABA) in vitro, has been used to disturb ABA homeostasis in planta. Transgenic plants constitutively overexpressing UGT71B6 (71B6-OE) have been analysed for changes in ABA and the related ABA metabolites abscisic acid glucose ester (ABA-GE),(More)
Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated.(More)
Changes in gene expression produced by the application of (+)-abscisic acid (ABA) to Arabidopsis thaliana plants were compared with changes produced by the ABA structural analogs (-)-ABA, (+)-8'-acetylene ABA and (-)-2',3'-dihydroacetylenic abscisyl alcohol. The maximum expression of many rapidly (+)-ABA-induced genes occurred prior to peak hormone(More)