Learn More
The intravesicular pH of intact rabbit reticulocytes was measured by two methods; one based on the intracellular:extracellular distribution of DMO (5, 5, dimethyl + oxazolidin-2,4-dione), methylamine, and chloroquine and the other by quantitative fluorescence microscopy of cell-bound transferrin. The latter method was also applied to nucleated erythroid(More)
BACKGROUND The major potential site of acid nitrosation is the proximal stomach, an anatomical site prone to a rising incidence of metaplasia and adenocarcinoma. Nitrite, a pre-carcinogen present in saliva, can be converted to nitrosating species and N-nitroso compounds by acidification at low gastric pH in the presence of thiocyanate. AIMS To assess the(More)
Calcitonin gene-related peptide (CGRP) is involved in a variety of stress responses in the rat. Central administration of CGRP activates the hypothalamo-pituitary-adrenal axis resulting in increased corticosterone secretion. We have previously shown that central CGRP suppresses the gonadotrophin-releasing hormone (GnRH) pulse generator, specifically LH(More)
Nitric oxide (NO) has been implicated in the processes by which animals recover from peripheral vestibular damage ("vestibular compensation"). However, there is little systematic data available on the effects of NO inhibition on the vestibular compensation process. In the present study we administered the nitric oxide synthase (NOS) inhibitor(More)
Rabbit reticulocytes were incubated with rabbit transferrin labelled with 59Fe and 125I in media in which the NaCl was replaced by other electrolytes or sucrose. Iron and transferrin uptake by the cells was affected by changes in the pH, ionic strength, ionic composition, and the osmolarity of the medium. Uptake was maximal at pH 7.4. A reduction in ionic(More)
Nitric oxide (NO) has been implicated in the processes by which animals recover from peripheral vestibular damage ('vestibular compensation'). However, few data exist on the dose-response effects of systemic administration of the nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), on the vestibular compensation process. The(More)
  • 1