Learn More
In natural and man-made ecosystems nitrifying bacteria experience frequent exposure to oxygen-limited conditions and thus have to compete for oxygen. In several reactor systems (retentostat, chemostat and sequencing batch reactors) it was possible to establish co-cultures of aerobic ammonium- and nitrite-oxidizing bacteria at very low oxygen concentrations(More)
In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale model system under oxygen limitation. A bioreactor(More)
Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the(More)
The obligately anaerobic ammonium oxidation (anammox) reaction with nitrite as primary electron acceptor is catalysed by the planctomycete-like bacteria Brocadia anammoxidans, Kuenenia stuttgartiensis and Scalindua sorokinii. The anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. They have a unique prokaryotic(More)
Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures, inoculated with activated sludge, and molecular ecological(More)
In oxygen-limited marine ecosystems cooperation between marine nitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria is of importance to nitrogen cycling. Strong evidence for cooperation between anammox bacteria and nitrifiers has been provided by environmental studies but little is known about the development of such communities, the effects of(More)
Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the(More)
The freshwater nature reserve De Bruuk is an iron- and sulfur-rich minerotrophic peatland containing many iron seeps and forms a suitable habitat for iron and sulfur cycle bacteria. Analysis of 16S rRNA gene-based clone libraries showed a striking correlation of the bacterial population of samples from this freshwater ecosystem with the processes of iron(More)
Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers(More)
In the anaerobic ammonium oxidation (anammox) process, ammonia is oxidized with nitrite as primary electron acceptor under strictly anoxic conditions. The reaction is catalysed by a specialized group of planctomycete-like bacteria. These anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. The reactions are assumed to be(More)