Suzanne Bisschop

  • Citations Per Year
Learn More
Using an optimized lift-off process we develop a technique for both nanoscale and single-dot patterning of colloidal quantum dot films, demonstrating feature sizes down to ~30 nm for uniform films and a yield of 40% for single-dot positioning, which is in good agreement with a newly developed theoretical model. While first of all presenting a unique tool(More)
Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations,(More)
New results on integration of colloidal quantum dots (QDs) into SiN microstructures are reported, including QD positioning with nanometric accuracy and the efficient coupling of their emission to waveguides and cavities. The results are relevant to on-chip quantum optics and information processing.
Hybrid silicon nitride (SiN)-quantum-dot (QD) microlasers coupled to a passive SiN output waveguide with a 7 µm diameter and a record-low threshold density of 27 µJ cm-2 are demonstrated. A new design and processing scheme offers long-term stability and facilitates in-depth QD material and device characterization, thereby opening new paths for optical(More)
  • 1