Suzannah V Hexter

  • Citations Per Year
Learn More
The extraordinary ability of Fe- and Ni-containing enzymes to catalyze rapid and efficient H(+)/H(2) interconversion--a property otherwise exclusive to platinum metals--has been investigated in a series of experiments combining variable-temperature protein film voltammetry with mathematical modeling. The results highlight important differences between the(More)
Despite being so large, many enzymes are not only excellent electrocatalysts - making possible chemical transformations under almost reversible conditions - but they also facilitate our understanding of electrocatalysis by allowing complex processes to be dissected systematically. The electrocatalytic voltammograms obtained for enzymes attached to an(More)
Protein film electrochemistry (PFE) is providing cutting-edge insight into the chemical principles underpinning biological hydrogen. Attached to an electrode, many enzymes exhibit "reversible" electrocatalytic behavior, meaning that a catalyzed redox reaction appears reversible or quasi-reversible when viewed by cyclic voltammetry. This efficiency is most(More)
Cyanide reacts rapidly with [NiFe]-hydrogenases (hydrogenase-1 and hydrogenase-2 from Escherichia coli) under mild oxidizing conditions, inhibiting the electrocatalytic oxidation of hydrogen as recorded by protein film electrochemistry. Electrochemical, EPR, and FTIR measurements show that the final enzyme product, formed within a second (even under 100%(More)
Protein film electrochemistry (PFE) has been used to study the assembly of the complex 6Fe active site of [FeFe]-hydrogenases (known as the H-cluster) from its precursors-the [4Fe-4S] domain that is already coordinated within the host, and the 2Fe domain that is presented as a synthetic water-soluble complex stabilized by an additional CO. Not only does PFE(More)
Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR(More)
  • 1