Learn More
In this paper, we describe an approach for the automatic medical annotation task of the 2008 CLEF cross-language image retrieval campaign (ImageCLEF). The data comprise 12076 fully annotated images according to the IRMA code. This work is focused on the process of feature extraction from images and hierarchical multi-label classification. To extract(More)
– At present a growing number of applications that generate massive streams of data need intelligent data processing and online analysis. Real-time surveillance systems, telecommunication systems, sensor networks and other dynamic environments are such examples. The imminent need for turning such data into useful information and knowledge augments the(More)
In this paper, we present a hierarchical multi-label classification system for visual concepts detection and image annotation. Hierarchical multi-label classification (HMLC) is a variant of classification where an instance may belong to multiple classes at the same time and these classes/labels are organized in a hierarchy. The system is composed of two(More)
In this paper, we present the approach that we applied to the medical modality classification tasks at the ImageCLEF evaluation forum. More specifically, we used the modality classification databases from the ImageCLEF competitions in 2011, 2012 and 2013, described by four visual and one textual types of features, and combinations thereof. We used local(More)
Web-based Personal Learning Environments (PLEs) have been widely recognized as a mean for supporting and assisting online learning practices. A PLE is a set of services customized by the student. Among these services, resource (either digital or human) recommendation is a crucial one. The paper briefly reviews existing approaches for recommending resources(More)
This paper presents the details of the participation of FCSE (Faculty of Computer Science and Engineering) research team in Image-CLEF 2013 medical tasks (modality classification, ad-hoc image retrieval and case-based retrieval). For the modality classification task we used SIFT descriptors and tf − idf weights of the surrounding text (image caption and(More)
In this paper, we present a multiple targets classification system for visual concepts detection and image annotation. Multiple targets classification (MTC) is a variant of classification where an instance may belong to multiple classes at the same time. The system is composed of two parts: feature extraction and classification/annotation. The feature(More)
The aim of the paper is to compare classification error of the classifiers applied to magnetic resonance images for each descriptor used for feature extraction. We compared several Support Vector Machine (SVM) techniques, neural networks and k nearest neighbor classifier for classification of Magnetic Resonance Images (MRIs). Different descriptors are(More)
a r t i c l e i n f o This paper presents a hierarchical multi-label classification (HMC) system for diatom image classification. HMC is a variant of classification where an instance may belong to multiple classes at the same time and these classes/labels are organized in a hierarchy. Our approach to HMC exploits the classification hierarchy by building a(More)