Learn More
Two newly discovered immune modulators, chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) and staphylococcal complement inhibitor (SCIN), cluster on the conserved 3' end of beta-hemolysin (hlb)-converting bacteriophages (betaC-phis). Since these betaC-phis also carry the genes for the immune evasion molecules staphylokinase (sak) and(More)
The complement system is pivotal in host defense but also contributes to tissue injury in several diseases. The assembly of C3 convertases (C4b2a and C3bBb) is a prerequisite for complement activation. The convertases catalyze C3b deposition on activator surfaces. Here we describe the identification of staphylococcal complement inhibitor, an excreted(More)
Recently we described a novel bacteriophage-encoded pathogenicity island in Staphylococcus aureus that harbors a number of virulence factors that are all involved in the evasion of innate immunity. Here we describe a mechanism by which staphylokinase (SAK), frequently present on this pathogenicity island, interferes with innate immune defenses: SAK is(More)
Complement is one of the first host defense barriers against bacteria. Activated complement attracts neutrophils to the site of infection and opsonizes bacteria to facilitate phagocytosis. The human pathogen Staphylococcus aureus has successfully developed ways to evade the complement system, for example by secretion of specific complement inhibitors.(More)
Group A Streptococcus (GAS) is a leading cause of infection-related mortality in humans. All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has been attributed to this(More)
The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system(More)
To combat the human immune response, bacteria should be able to divert the effectiveness of the complement system. We identify four potent complement inhibitors in Staphylococcus aureus that are part of a new immune evasion cluster. Two are homologues of the C3 convertase modulator staphylococcal complement inhibitor (SCIN) and function in a similar way as(More)
Streptococcal inhibitor of complement (SIC) is a highly polymorphic extracellular protein and putative virulence factor secreted by M1 and M57 strains of group A Streptococcus (GAS). The sic gene is highly upregulated in invasive M1T1 GAS isolates following selection of mutations in the covR/S regulatory locus in vivo. Previous work has shown that SIC(More)
Upon entering the human body, bacteria are confronted with the sophisticated innate defense mechanisms of the human host. From work in recent years it has become obvious that a new and growing family of small and excreted proteins can counteract the antibacterial effects of innate immunity. These highly selective proteins pick out crucial elements of our(More)