Learn More
Nystatin-perforated patch recordings were made from mechanically dissociated basolateral amygdala neurons with preserved intact native presynaptic nerve terminals to study the mechanism of 5-HT3 receptor-mediated serotonergic modulation of GABAergic inhibition. The specific 5-HT3 agonist mCPBG (1 microM) rapidly facilitated the frequency of GABAergic(More)
Serotonin (5-HT) is considered to play a significant role in anxiety-related behaviors in animals through actions on the amygdaloid complex. To evaluate this role from the point of neurotransmitter release regulation, nystatin-perforated patch recording was employed on mechanically dissociated basolateral amygdala neurons containing functional synaptic(More)
A-type K(+) current (I(A)) is a rapidly inactivating voltage-dependent potassium current which can regulate the frequency of action potential (AP) generation. Increased firing frequency of ventral tegmental area (VTA) neurons is associated with the reinforcing effects of some drugs of abuse like nicotine and ethanol. In the present study, we classified(More)
Paroxetine discontinuation symptoms can at times be severe enough to reduce the quality of life. However, it is currently not possible to predict the occurrence of discontinuation syndrome before the initiation or discontinuation of paroxetine treatment. In this study, we investigated the effects of genetic polymorphisms in the serotonin 1A, 2A, 2C, 3A, and(More)
M-current (I(M)) is a voltage-gated potassium current (KCNQ type) that affects neuronal excitability and is modulated by some drugs of abuse. Ventral tegmental area (VTA) dopamine (DA) neurons are important for the reinforcing effects of drugs of abuse. Therefore we studied I(M) in acutely dissociated rat DA VTA neurons with nystatin-perforated patch(More)
There is increasing evidence that a functional interaction exists between interleukin-1beta (IL-1beta) and N-methyl-D-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1beta on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1beta (30-100(More)
Interleukin-1beta (IL-1beta) is a potent pro-inflammatory cytokine that is primarily produced by microglia in the brain. IL-1beta inhibits N-methyl-d-aspartate (NMDA)-induced outward currents (I(NMDA-OUT)) through IL-1 type I receptor (IL-1RI) in hippocampal CA1 neurons (Zhang, R., Yamada, J., Hayashi, Y., Wu, Z, Koyama, S., Nakanishi, H., 2008. Inhibition(More)
Ethanol-induced excitation of ventral tegmental area dopamine (DA VTA) neurons is thought to be critical for the reinforcing effects of ethanol. Although ligand-gated ion channels are known to be the targets of ethanol, ethanol modulation of voltage-dependent ion channels of central neurons has not been well studied. We have demonstrated that ethanol(More)
The periaqueductal gray (PAG) plays a critical role in descending antinociception. In mechanically dissociated rat PAG neurons, pharmacologically separated spontaneous GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the nystatin-perforated patch technique. Both DAMGO, a specific mu-opioid receptor agonist, and serotonin(More)
Locus coeruleus (LC) is the significant nucleus for consciousness and it is sensitive to metabolic inhibition. We investigated the effects of a metabolic inhibitor sodium cyanide (NaCN) on the rat dissociated LC neurons using nystatin-perforated patch recordings. Under voltage-clamp (VH=-40 mV), application of NaCN evoked outward currents composed of(More)