Learn More
MOTIVATION With the advent of microarray chip technology, large data sets are emerging containing the simultaneous expression levels of thousands of genes at various time points during a biological process. Biologists are attempting to group genes based on the temporal pattern of their expression levels. While the use of hierarchical clustering (UPGMA) with(More)
MOTIVATION Biologists often employ clustering techniques in the explorative phase of microarray data analysis to discover relevant biological groupings. Given the availability of numerous clustering algorithms in the machine-learning literature, an user might want to select one that performs the best for his/her data set or application. While various(More)
MOTIVATION Statistical tests for the detection of differentially expressed genes lead to a large collection of p-values one for each gene comparison. Without any further adjustment, these p-values may lead to a large number of false positives, simply because the number of genes to be tested is huge, which might mean wastage of laboratory resources. To(More)
MOTIVATION Gene association/interaction networks provide vast amounts of information about essential processes inside the cell. A complete picture of gene-gene associations/interactions would open new horizons for biologists, ranging from pure appreciation to successful manipulation of biological pathways for therapeutic purposes. Therefore, identification(More)
MOTIVATION In a typical gene expression profiling study, our prime objective is to identify the genes that are differentially expressed between the samples from two different tissue types. Commonly, standard analysis of variance (ANOVA)/regression is implemented to identify the relative effects of these genes over the two types of samples from their(More)
MOTIVATION Detection of differentially expressed genes is one of the major goals of microarray experiments. Pairwise comparison for each gene is not appropriate without controlling the overall (experimentwise) type 1 error rate. Dudoit et al. have advocated use of permutation-based step-down P-value adjustments to correct the observed significance levels(More)
In recent microarray experiments thousands of gene expressions are simultaneously tested in comparing samples (e.g., tissue types or experimental conditions). Application of a statistical test, such as the t-test, would lead to a p-value for each gene that reflects the amount of statistical evidence present in the data that the given gene is indeed(More)
MOTIVATION Many approaches have been proposed for the protein identification problem based on tandem mass spectrometry (MS/MS) data. In these experiments, proteins are digested into peptides and the resulting peptide mixture is subjected to mass spectrometry. Some interesting putative peptide features (peaks) are selected from the mass spectra. Following(More)
  • 1