Learn More
Calcineurin (protein phosphatase 2B), the only serine/threonine phosphatase under the control of Ca2+/calmodulin, is an important mediator in signal transmission, connecting the Ca2+-dependent signalling to a wide variety of cellular responses. Furthermore, calcineurin is specifically inhibited by the immunosuppressant drugs cyclosporin A and tacrolimus(More)
A genetic screen for mutations synthetically lethal with fission yeast calcineurin deletion led to the identification of Ypt3, a homolog of mammalian Rab11 GTP-binding protein. A mutant with the temperature-sensitive ypt3-i5 allele showed pleiotropic phenotypes such as defects in cytokinesis, cell wall integrity, and vacuole fusion, and these were(More)
Fission yeast Schizosaccharomyces pombe is amenable to genetics and is an excellent model system for studying eukaryotic cell biology. However, auxotrophic markers that can be used for both targeted gene integration and disruption are very limited. Here we performed a forward genetic screen in an effort to develop a new set of selectable markers for use in(More)
Calcineurin is a highly conserved regulator of Ca(2+) signaling in eukaryotes. In fission yeast, calcineurin is not essential for viability but is required for cytokinesis and Cl(-) homeostasis. In a genetic screen for mutations that are synthetically lethal with calcineurin deletion, we isolated a mutant, cis1-1/apm1-1, an allele of the apm1(+) gene that(More)
Calcineurin is a Ca2+- and calmodulin-regulated protein phosphatase that is important in Ca2+-mediated signal transduction. Recent application of the powerful techniques of molecular genetics has demonstrated that calcineurin is involved in the regulation of critical biological processes such as T cell activation, muscle hypertrophy, memory development,(More)
Lithium is the drug of choice for the treatment of bipolar affective disorder. The identification of an in vivo target of lithium in fission yeast as a model organism may help in the understanding of lithium therapy. For this purpose, we have isolated genes whose overexpression improved cell growth under high LiCl concentrations. Overexpression of tol1(+),(More)
Adaptins are subunits of the heterotetrameric (beta/mu/gamma/sigma) adaptor protein (AP) complexes that are involved in clathrin-mediated membrane trafficking. Here, we show that in Schizosaccharomyces pombe the deletion strains of each individual subunit of the AP-1 complex [Apl2 (beta), Apl4 (gamma), Apm1 (mu) and Aps1 (sigma)] caused distinct phenotypes(More)
Calcineurin, a protein phosphatase required for Ca2+ signaling in many cell types, is a heterodimer composed of catalytic and regulatory subunits. The fission yeast genome encodes a single set of catalytic (Ppb1) and regulatory (Cnb1) subunits, providing an ideal model system to study the functions of these subunits in vivo. Here, we cloned the cnb1+ gene(More)
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes that convert extracellular signals into various outputs such as cell growth, differentiation and cell death. MAPK phosphatases selectively inactivate MAPKs by dephosphorylating critical phosphothreonine and phosphotyrosine residues. The transcriptional induction of MAPK(More)
BACKGROUND In fission yeast, calcineurin has been implicated in cytokinesis because calcineurin-deleted cells form multiple septa and cell separation is impeded. However, this mechanism remains unclear. RESULTS We screened for mutations that confer synthetic lethality with calcineurin deletion and isolated a mutant, its 10-1/cdc7-i10, a novel allele of(More)