Sushil Kumar Tomar

Learn More
EngA, a unique GTPase containing a KH-domain preceded by two consecutive G-domains, displays distinct nucleotide binding and hydrolysis activities. So far, Escherichia coli EngA is reported to bind the 50S ribosomal subunit in the guanosine-5'-trihosphate (GTP) bound state. Here, for the first time, using mutations that allow isolating the activities of the(More)
We further present some semi-discrete modifications to the cubically convergent iterative methods derived by Kanwar and Tomar (Modified families of Newton, Halley and Chebyshev methods, Appl. Math. Comput. and derived a number of interesting new classes of third-order multi-point iterative methods free from(More)
YchF, a universally conserved protein, hitherto thought to be a GTPase, was shown to be an ATPase based on structural and biochemical studies on hOLA1, a human ortholog of YchF. However, the cellular role of YchF is unclear. Based on the presence of a RNA binding domain in this protein and significant homology to ribosome binding Obg family GTPases, we(More)
HflX is a GTP binding protein of unknown function. Based on the presence of the hflX gene in hflA operon, HflX was believed to be involved in the lytic-lysogenic decision during phage infection in Escherichia coli. We find that E. coli HflX binds 16S and 23S rRNA - the RNA components of 30S and 50S ribosomal subunits. Here, using purified ribosomal(More)
Escherichia coli RfaH activates gene expression by tethering the elongating RNA polymerase to the ribosome. This bridging action requires a complete refolding of the RfaH C-terminal domain (CTD) from an α-helical hairpin, which binds to the N-terminal domain (NTD) in the free protein, to a β-barrel, which interacts with the ribosomal protein S10 following(More)
One-parameter families of Newton’s iterative method for the solution of nonlinear equations and its extension to unconstrained optimization problems are presented in the paper. These methods are derived by implementing approximations through a straight line and through a parabolic curve in the vicinity of the root. The presented variants are found to yield(More)
EngA is an essential protein involved in ribosome biogenesis. It is an unique GTPase, possessing two consecutive G-domains. Using sequence and phylogenetic analysis, we found two intriguing variants among EngA homologues - one with a shorter linker joining the G-domains and another with a longer linker, which additionally possesses an extended C-terminus.(More)