Learn More
Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). At present, the function of presynaptic ribbons at these synapses is still largely unknown. Here we show that anchoring of IHC ribbons is impaired in mouse mutants for the presynaptic scaffolding protein Bassoon. The lack of active-zone-anchored(More)
The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of(More)
The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the(More)
Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms(More)
Exocytosis of neurotransmitter from synaptic vesicles is restricted to specialized sites of the presynaptic plasma membrane called active zones. A complex cytomatrix of proteins exclusively assembled at active zones, the CAZ, is thought to form a molecular scaffold that organizes neurotransmitter release sites. Here, we have analyzed synaptic targeting and(More)
PURPOSE Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release via L-type voltage-dependent calcium channel (VDCC) activity. Functional abnormalities (e.g., a reduced electroretinogram b-wave), arising from mutations of presynaptic proteins, such as Bassoon and the VDCCalpha1 subunit Cacna1f,(More)
Mutant mice lacking the central region of the presynaptic active zone protein Bassoon were generated to establish the role of this protein in the assembly and function of active zones as sites of synaptic vesicle docking and fusion. Our data show that the loss of Bassoon causes a reduction in normal synaptic transmission, which can be attributed to the(More)
Vision is a highly complex task that involves several steps of parallel information processing in various areas of the central nervous system. Complex processing of visual signals occurs as early as at the retina, the first stage in the visual system. Various aspects of visual information are transmitted in parallel from the photoreceptors (the input(More)
Protein synthesis is a dynamic process that tunes the cellular proteome in response to internal and external demands. Metabolic labeling approaches identify the general proteomic response but cannot visualize specific newly synthesized proteins within cells. Here we describe a technique that couples noncanonical amino acid tagging or puromycylation with the(More)
Immunocytochemical discrimination of distinct bipolar cell types in the mouse retina is a prerequisite for analyzing retinal circuitry in wild-type and transgenic mice. Here we demonstrate that among the more than 10 anatomically defined mouse bipolar cell types, type 4 bipolar cells are specifically recognized by anti-calsenilin antibodies. Axon terminals(More)