Susanne Teschl

Learn More
A real-time recording setup combining exhaled breath volatile organic compound (VOC) measurements by proton transfer reaction-mass spectrometry (PTR-MS) with hemodynamic and respiratory data is presented. Continuous automatic sampling of exhaled breath is implemented on the basis of measured respiratory flow: a flow-controlled shutter mechanism guarantees(More)
In this phenomenological study we focus on dynamic measurements of volatile organic compounds (VOCs) in exhaled breath under exercise conditions. An experimental setup efficiently combining breath-by-breath analyses using proton transfer reaction mass spectrometry (PTR-MS) with data reflecting the behaviour of major hemodynamic and respiratory parameters is(More)
Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide (NO) have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical(More)
Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative(More)
Isoprene is one of the most abundant endogenous volatile organic compounds (VOCs) contained in human breath and is considered to be a potentially useful biomarker for diagnostic and monitoring purposes. However, neither the exact biochemical origin of isoprene nor its physiological role is understood in sufficient depth, thus hindering the validation of(More)
In this paper we develop a simple two compartment model which extends the Farhi equation to the case when the inhaled concentration of a volatile organic compound (VOC) is not zero. The model connects the exhaled breath concentration of systemic VOCs with physiological parameters such as endogenous production rates and metabolic rates. Its validity is(More)
Analysis of exhaled trace gases is a novel methodology for gaining continuous and non-invasive information on the clinical state of an individual. This paper serves to explore some potential applications of breath gas analysis in anesthesia, describing a monitoring scheme for target site concentrations and cardiac output via physiological modeling and(More)
Isothermal rebreathing has been proposed as an experimental technique for estimating the alveolar levels of hydrophilic volatile organic compounds (VOCs) in exhaled breath. Using the prototypic test compounds acetone and methanol, we demonstrate that the end-tidal breath profiles of such substances during isothermal rebreathing show a characteristic(More)
Real-time analysis of exhaled breath is a promising new method to get quantitative information on lipophilic compounds stored in the human body. Some pilot results are presented on isoprene, which is produced as a by-product of the cholesterol synthesis and appears in exhaled breath at concentrations of about 100 parts-per-billion (ppb). The results have(More)