Susanne Schreiber

Learn More
Neurons integrate subthreshold inputs in a frequency-dependent manner. For sinusoidal stimuli, response amplitudes thus vary with stimulus frequency. Neurons in entorhinal cortex show two types of such resonance behavior: stellate cells in layer II exhibit a prominent peak in the resonance profile at stimulus frequencies of 5-16 Hz. Pyramidal cells in layer(More)
Spike timing reliability of neuronal responses depends on the frequency content of the input. We investigate how intrinsic properties of cortical neurons affect spike timing reliability in response to rhythmic inputs of suprathreshold mean. Analyzing reliability of conductance-based cortical model neurons on the basis of a correlation measure, we show two(More)
We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima(More)
Despite intrinsic noise sources, neurons can generate action potentials with remarkable reliability. This reliability is influenced by the characteristics of sensory or synaptic inputs, such as stimulus frequency. Here we use conductance-based models to study the frequency dependence of reliability in terms of the underlying single-cell properties. We are(More)
Many neurons exhibit subthreshold membrane-potential resonances, such that the largest voltage responses occur at preferred stimulation frequencies. Because subthreshold resonances are known to influence the rhythmic activity at the network level, it is vital to understand how they affect spike generation on the single-cell level. We therefore investigated(More)
Synaptic inputs to neurons are processed in a frequency-dependent manner, with either low-pass or resonant response characteristics. These types of filtering play a key role in the frequency-specific information flow in neuronal networks. While the generation of resonance by specific ionic conductances is well investigated, less attention has been paid to(More)
The transbilayer movement of fluorescent phospholipid analogs in liposomes was studied at the lipid phase transition of phospholipid membranes. Two NBD-labeled analogs were used, one bearing the fluorescent moiety at a short fatty acid chain in the sn-2 position (C(6)-NBD-PC) and one headgroup-labeled analog having two long fatty acyl chains (N-NBD-PE). The(More)
When a rat moves, grid cells in its entorhinal cortex become active in multiple regions of the external world that form a hexagonal lattice. As the animal traverses one such "firing field," spikes tend to occur at successively earlier theta phases of the local field potential. This phenomenon is called phase precession. Here, we show that spike phases(More)
Optimal coding principles are implemented in many large sensory systems. They include the systematic transformation of external stimuli into a sparse and decorrelated neuronal representation, enabling a flexible readout of stimulus properties. Are these principles also applicable to size-constrained systems, which have to rely on a limited number of neurons(More)
Although immunotherapy has shown promising results in the treatment of cancer, clinical studies assessing immunologic approaches in patients with advanced cancer will seldom be conducted in the absence of conventional treatment strategies such as chemotherapy. Here we investigate the combination of chemotherapy with CpG oligonucleotide and dendritic(More)