Susanne Rinné

Learn More
The interaction of the adaptor protein p11, also denoted S100A10, with the C-terminus of the two-pore-domain K+ channel TASK-1 was studied using yeast two-hybrid analysis, glutathione S-transferase pull-down, and co-immunoprecipitation. We found that p11 interacts with a 40 amino-acid region in the proximal C-terminus of the channel. In heterologous(More)
OBJECTIVE The outward current flowing through the two-pore domain acid-sensitive potassium channel TASK-1 (I(TASK)) and its inhibition via alpha1-adrenergic receptors was studied in rat ventricular cardiomyocytes. METHODS Quantitative RT-PCR experiments were carried out with mRNA from rat heart. Patch-clamp recordings were performed in isolated rat(More)
Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As(More)
We have characterized a sequence motif, EDE, in the proximal C-terminus of the acid-sensitive potassium channel TASK-3. Human TASK-3 channels were expressed in Xenopus oocytes, and the density of the channels at the surface membrane was studied with two complementary techniques: a luminometric surface expression assay of hemagglutinin epitope-tagged TASK-3(More)
Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and(More)
Atrial fibrillation and obstructive sleep apnea are responsible for significant morbidity and mortality in the industrialized world. There is a high medical need for novel drugs against both diseases, and here, Kv1.5 channels have emerged as promising drug targets. In humans, TASK-1 has an atrium-specific expression and TASK-1 is also abundantly expressed(More)
BACKGROUND/AIMS Atrial fibrillation is the most common arrhythmia in the elderly, and potassium channels with atrium-specific expression have been discussed as targets to treat atrial fibrillation. Our aim was to characterize TASK-1 channels in human heart and to functionally describe the role of the atrial whole cell current I(TASK-1). METHODS AND(More)
We have identified a novel splice variant of the human and rat two-pore domain potassium (K2P) channel TREK-1. The splice variant TREK-1e results from skipping of exon 5, which causes a frame shift in exon 6. The frame shift produces a novel C-terminal amino acid sequence and a premature termination of translation, which leads to a loss of transmembrane(More)
Analyzing a patient with progressive and severe cardiac conduction disorder combined with idiopathic ventricular fibrillation (IVF), we identified a splice site mutation in the sodium channel gene SCN5A. Due to the severe phenotype, we performed whole-exome sequencing (WES) and identified an additional mutation in the KCNK17 gene encoding the K2P potassium(More)
The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a(More)