Susanne Röhrig

Learn More
BAY 59-7939 is an oral, direct Factor Xa (FXa) inhibitor in development for the prevention and treatment of arterial and venous thrombosis. BAY 59-7939 competitively inhibits human FXa (K(i) 0.4 nm) with > 10 000-fold greater selectivity than for other serine proteases; it also inhibited prothrombinase activity (IC(50) 2.1 nm). BAY 59-7939 inhibited(More)
To study trophic dependencies of rat and mouse corticospinal neurons (CSN), we established a lesion model for the induction of death of analogous populations of CSN in these rodent species. Before lesion, CSN were retrogradely labeled with Fast Blue (FB). A stereotaxic cut lesion through the entire internal capsule (ICL) was used to axotomize CSN. The(More)
Rivaroxaban is a direct inhibitor of factor Xa, a coagulation factor at a critical juncture in the blood coagulation pathway leading to thrombin generation and clot formation. It is selective for human factor Xa, for which it has >10 000-fold greater selectivity than for other biologically relevant serine proteases (half-maximal inhibitory concentration(More)
Despite recent progress in antithrombotic therapy, there is still an unmet medical need for safe and orally available anticoagulants. The coagulation enzyme Factor Xa (FXa) is a particularly promising target, and recent efforts in this field have focused on the identification of small-molecule inhibitors with good oral bioavailability. We identified(More)
The activated serine protease factor Xa is a promising target for new anticoagulants. After studies on naturally occurring factor Xa inhibitors indicated that such agents could be effective and safe, research focused on small-molecule direct inhibitors of factor Xa that might address the major clinical need for improved oral anticoagulants. In 2008,(More)
Neuronal growth factors regulate the survival of neurons by their survival and death-promoting activity on distinct populations of neurons. The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) promote neuronal survival via tyrosine kinase (Trk) receptors, whereas NGF and BDNF can also induce(More)
Several clinical candidates have now emerged as a result of an intense search for orally available, antithrombotic factor Xa inhibitors. This review highlights the discovery of XareltoTM (Rivaroxaban) starting from an initial tetrahydrophthalimide screening hit. The major breakthrough was the finding that a chlorothiophene moiety can undergo an interaction(More)