Susanne Pfoertner

Learn More
Naturally occurring CD4+CD25+ regulatory T cells (TReg) are involved in the control of autoimmune diseases, transplantation tolerance, and anti-tumor immunity. Thus far, genomic studies on TReg cells were restricted to murine systems, and requirements for their development, maintenance, and mode of action in humans are poorly defined. To improve(More)
Objectives: Renal cell carcinoma is an aggressive malignancy with a high propensity for both early and metachronous regional and distant metastasis. While surgical resection is the mainstay of therapy for patients with localized disease, the prognosis for patients with distant metastasis is poor with a 5-year survival rate of less than 10%. Response rates(More)
Here, we report the identification of the ubiquitin-like gene UBD as a downstream element of FOXP3 in human activated regulatory CD4(+)CD25(hi) T cells (T(reg)). Retroviral transduction of UBD in human allo-reactive effector CD4(+) T helper (T(h)) cells upregulates CD25 and mediates downregulation of IL4 and IL5 expression similar to overexpression of(More)
Foxp3 functions as a lineage specification factor for the development of naturally occurring thymus-derived CD4+CD25+ regulatory T (Treg) cells. Recent evidence suggests that naive Foxp3-CD4+CD25- T cells can be converted in the periphery into Foxp3+ Treg cells. In this study, we have identified the G protein-coupled receptor (GPR)83 to be selectively(More)
CD4(+)CD25(high) regulatory T cells (T(reg)) have the potent ability to suppress host immune responses, thus preventing autoimmune diseases. However, increased T(reg) frequencies have also been found in cancer patients implicating their involvement in tumor escape from immunological control. We investigated the frequency, functional effects and gene(More)
Aplastic anemia (AA) is a bone marrow failure syndrome mostly characterized by an immune-mediated destruction of marrow hematopoietic progenitor/stem cells. The resulting hypocellularity limits a detailed analysis of the cellular immune response. To overcome this technical problem we performed a microarray analysis of CD3+ T-cells derived from bone marrow(More)
Despite the known anti-proliferative and tumor-suppressive effects seen with retinoic acid (RA), treatment of metastatic renal cell carcinoma (RCC) failed to meet the initial expectations. As the exact mechanisms of action of RA and especially the role of the cellular RA binding proteins (CRABP) have not been elucidated yet, we investigated the expression(More)
INTRODUCTION Retinoic acid (RA) and its derivates possess antiproliferative and tumor-suppressive abilities and are successfully used in the treatment of various malignancies. However, in metastatic renal cell carcinoma (RCC), its application did not meet first expectations. As the exact mechanisms of RA action and especially the role of the cellular(More)
AIM Retinoic acid (RA) has proven to possess modest but distinct activity in metastatic renal cell carcinoma (RCC), at least in a subgroup of patients. However, the exact molecular mechanisms leading to success or failure of RA application in individual patients are still unknown. As earlier studies have indicated that in RCC the RA receptor (RAR) beta(More)
  • 1