Susanne Hennig

Learn More
Napsamycins are potent inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan biosynthesis, and are classified as uridylpeptide antibiotics. They comprise an N-methyl diaminobutyric acid, an ureido group, a methionine and two non-proteinogenic aromatic amino acid residues in a peptide backbone that is linked to a(More)
The biosynthetic gene clusters of the gyrase inhibitors coumermycin A(1) and clorobiocin contain two different resistance genes (gyrB(R) and parY(R)). Both genes code for B subunits of type II topoisomerases. The authors have now overexpressed and purified the encoded proteins, as well as the corresponding A subunits GyrA and ParX. Expression was carried(More)
This study reports improved mutasynthetic approaches for the production of aminocoumarin antibiotics. Previously, the mutasynthetic production of aminocoumarins with differently substituted benzoyl moieties was limited by the substrate specificity of the amide synthetase CloL. We expressed two amide synthetases with different substrate specificity, CouL and(More)
We target the gatekeeper MET146 of c-Jun N-terminal kinase 3 (JNK3) to exemplify the applicability of X···S halogen bonds in molecular design using computational, synthetic, structural and biophysical techniques. In a designed series of aminopyrimidine-based inhibitors, we unexpectedly encounter a plateau of affinity. Compared to their QM-calculated(More)
The biosynthesis of aminocoumarin antibiotics requires two acyladenylate-forming enzymes: one for the activation of L-tyrosine as a precursor of the aminocoumarin moiety and another for the linkage of an acyl moiety to the aminocoumarin moiety. Unexpectedly, the biosynthetic gene cluster of the aminocoumarin antibiotic rubradirin was found to contain three(More)
  • 1