Susanne Gülich

Learn More
Staphylococcal protein A (SPA) is a cell surface protein expressed by Staphylococcus aureus. It consists of five repetitive domains. The five SPA-domains show individual interaction to the Fc-fragment as well as certain Fab-fragments of immunoglobulin G (IgG) from most mammalian species. Due to the high affinity and selectivity of SPA, it has a widespread(More)
One of the problems with a proteinaceous affinity ligand is their sensitivity to alkaline conditions. Here, we show that a simple and straightforward strategy consisting in replacing all asparagine residues with other amino acids can dramatically improve the chemical stability of a protein towards alkaline conditions. As a model, a Streptococcal(More)
Most protein-based affinity chromatography media are very sensitive towards alkaline treatment, which is a preferred method for regeneration and removal of contaminants from the purification devices in industrial applications. In a previous study, we concluded that a simple and straightforward strategy consisting of replacing asparagine residues could(More)
One of the problems in the recovery of antibodies by affinity chromatography is the low pH, which is normally essential to elute the bound material from the column. Here, we have addressed this problem by constructing destabilized mutants of a domain analogue (domain Z) from an IgG-binding bacterial receptor, protein A. In order to destabilize the(More)
Alkaline conditions are generally preferred for sanitization of chromatography media by cleaning-in-place (CIP) protocols in industrial biopharmaceutical processes. The use of such rigorous conditions places stringent demands on the stability of ligands intended for use in affinity chromatography. Here, we describe efforts to meet these requirements for a(More)
Significant efforts are put into the design of large-scale purification processes of proteins due to great demands regarding cost efficiency and safety. In order to design an effective purification scheme the unit operations need to be reduced to a minimum. In this review we are discussing proteinaceous ligands as well as small synthetic mimics for use in(More)
We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed.(More)
The formation of amyloid fibers and their deposition in the body is a characteristic of a number of devastating human diseases. Here, we propose a structural model, based on X-ray diffraction data, for the basic structure of an amyloid fibril formed by using the variants of the B1 domain of IgG binding protein G of Streptococcus. The model for the fibril(More)
The kinetic rate parameters for the interaction between a single domain analogue of staphylococcal protein A (Z) and a mouse-IgG3 monoclonal antibody (MAb) were measured in Hepes buffer with different chemical additives. Five buffer ingredients (pH, NaCl, DMSO, EDTA, and KSCN) were varied simultaneously in 16 experiments following a statistical experimental(More)
We report a point mutation in the second contact shell of the high-affinity streptavidin-biotin complex that appears to reduce binding affinity through transmitted effects on equilibrium dynamics. The Y54F streptavidin mutation causes a 75-fold loss of binding affinity with 73-fold faster dissociation, a large loss of binding enthalpy (ΔΔH = 3.4 kcal/mol at(More)
  • 1