Learn More
Control of cellular survival and proliferation is dependent on extracellular signals and is a prerequisite for ordered tissue development and maintenance. Activation of the cAMP responsive element binding protein (CREB) by phosphorylation has been implicated in the survival of mammalian cells. To define its roles in the mouse central nervous system, we(More)
The transcription factor cAMP-responsive element binding protein (CREB) has been shown to regulate different physiological responses including drug addiction and emotional behavior. Molecular changes including adaptive modifications of the transcription factor CREB are produced during drug dependence in many regions of the brain, including the locus(More)
Activating transcription factor 1 (ATF1), CREB, and the cyclic AMP (cAMP) response element modulatory protein (CREM), which constitute a subfamily of the basic leucine zipper transcription factors, activate gene expression by binding as homo- or heterodimers to the cAMP response element in regulatory regions of target genes. To investigate the function of(More)
The family of CREB (cAMP response element-binding protein) transcription factors are involved in a variety of biological processes including the development and plasticity of the nervous system. In the maturing and adult brain, CREB genes are required for activity-dependent processes, including synaptogenesis, refinement of connections and long-term(More)
The 'winged helix' or 'forkhead' transcription factor gene family is defined by a common 100 amino acid DNA binding domain which is a variant of the helix-turn-helix motif. Here we describe the structure and expression of the mouse fkh-6 and MFH-1 genes. Both genes are expressed in embryonic mesoderm from the headfold stage onward. Transcripts for both(More)
The family of CREB transcription factors is involved in a variety of biological processes including the development and plasticity of the nervous system. To gain further insight into the roles of CREB family members in the development of the embryonic brain, we examined the migratory phenotype of CREB1(Nescre)CREM(-/-) mutants. We found that the lack of(More)
The principal regulation of body growth is via a cascade of hormone signals emanating from the hypothalamus, by release of GHRH, which then directs the somatotroph cells of the pituitary to release GH into the blood stream. This in turn leads to activation of signal transducer and activator of transcription 5-dependent expression of genes such as IGF-I in(More)
Recent generation of genetically modified Creb1 mutant mice has revealed an important role for CREB (cAMP responsive element binding protein) and the related proteins CREM (cAMP responsive element modulator) and ATF1 (activating transcription factor 1) in cell survival, in agreement with previous studies using overexpression of dominant-negative CREB(More)
  • 1