Learn More
OBJECTIVES The aim of the present study was to evaluate six different implant surface coatings with respect to bone formation. Being major structural components of the extracellular matrix, collagen, the non-collagenous components decorin/chondroitin sulphate (CS) and the growth factors TGF-beta1/BMP-4 served in different combinations as coatings of(More)
Construction of biomaterials with the ability to guide cell function is a topic of high interest in biomaterial development. One approach is using components native to the ECM of the target tissue to generate in vitro a microenvironment that can also elicit specific responses in cells and tissues--an artificial ECM (aECM). The focus is on collagen as the(More)
Coating of orthopaedic implants with extracellular bone matrix components was performed to enhance bone healing. Titanium pins of 0.8mm diameter were coated with type I collagen (Ti/Coll), RGD peptide (Ti/RGD) or type I collagen and chondroitin sulfate (Ti/Coll/CS). Uncoated pins (Ti) served as control. The pins were inserted as intramedullary nails into(More)
PURPOSE A satisfactory clinical outcome in dental implant treatment relies on primary stability for immediate load bearing. While the geometric design of an implant contributes to mechanical stability, the nature of the implant surface itself is also critically important. Biomechanical and microcomputerized tomographic evaluation of implant osseointegration(More)
Studies in developmental and cell biology have established the fact that responses of cells are influenced to a large degree by morphology and composition of the extracellular matrix. Goal of this work is to use this basic principle to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM),(More)
Responses of osteoblastic cells are influenced by morphology and composition of the extracellular matrix, and this fact has been used to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM). In this study, the effect of the collagen types I and III on adhesion, proliferation, and(More)
Several attempts have been made to improve osseointegration of titanium alloy as an implant material by modification of its surface. In the present study, proliferation, differentiation, and mineralization of osteoblasts on type I collagen-coated Ti6Al4V were investigated. The activity of alkaline phosphatase and the accumulation of calcium by osteoblasts(More)
Collagen has found use as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration through mimicry of the bone extracellular matrix in vivo. The aim of this study was to compare the collagen types I, II, and III with regard to their ability to bind the small leucine-rich proteoglycans(More)
Titanium and titanium alloys are often used for orthopedic and dental implants. Osseointegration of Ti6Al4V may be improved not only by precoating of the surface with extracellular matrix proteins like collagen type I but also by additional immobilization of growth factors. In the present study, transforming growth factor beta1 (TGF-beta1) which is known as(More)
Collagen is used as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration by mimicry of the bone extracellular matrix in vivo. The biomimicry strategy can be taken further by incorporating the small leucine-rich proteoglycans (SLRPs) decorin and biglycan, which are expressed in bone.(More)