Learn More
Using the acoustic startle reflex, prepulse inhibition (PPI) is typically demonstrated by the interaction between two auditory stimuli presented in close temporal proximity. When a startle-eliciting pulse stimulus is shortly preceded by a weak prepulse stimulus, the reaction to the former is attenuated in comparison to when the pulse stimulus is presented(More)
The triple-transgenic mouse line (3 x Tg-AD) harboring PS1M146V, APPSwe, and taup301L transgenes represents the only transgenic model for Alzheimer's disease (AD) to date capturing both beta-amyloid and tau neuropathology. The present study provides an extensive behavioral characterization of the 3 x Tg-AD mouse line, evaluating the emergence of(More)
Gene-environment interactions are known to play a major role in the ethiopathology of several neuropsychiatric disorders, including Alzheimer's disease (AD). The present study investigates whether environmental manipulations, that is, social isolation, may affect the genetic predisposition to develop AD-related traits in a triple transgenic mouse model (3 x(More)
Accumulating evidence suggest that alterations in Reelin-mediated signaling may contribute to neuronal dysfunction associated with Alzheimer's disease (AD), the most common form of senile dementia. However, limited information is available on the effect of age, the major risk factor of AD, on Reelin expression. Here, we report that normal aging in rodents(More)
There is growing interest in the effects of voluntary wheel running activity on brain and behaviour in laboratory rodents and their implications to humans. Here, the major findings to date on the impact of exercise on mental health and diseases as well as the possible underlying neurobiological mechanisms are summarised. Several critical modulating factors(More)
BACKGROUND The R6/1 mouse line is one of the most widely employed models of Huntington Disease (HD), a complex syndrome characterized by motor and non-motor deficits. Surprisingly, its behavioral phenotype during the early phases of the pathology when the motor impairments are not manifest yet has been poorly investigated. It is also not clear whether the(More)
Hypersensitivity in response to sensory stimuli and neocortical hyperexcitability are prominent features of Fragile X Syndrome (FXS) and autism spectrum disorders, but little is known about the dendritic mechanisms underlying these phenomena. We found that the primary somatosensory neocortex (S1) was hyperexcited in response to tactile sensory stimulation(More)
Mimicking relevant behavioral features of the human pathology is one of the most important challenges for animal models of neurological disorders including Alzheimer disease (AD). Indeed, the most popular genetic AD mouse lines bearing mutations of the amyloid precursor protein (APP) and presenilin 1 genes (PS1), often fail to present robust cognitive(More)
Huntington's disease (HD) is a devastating neurodegenerative disease characterized by a progressive decline in motor abilities, as well as in cognitive and social behaviors. Most of these behavioral deficits are recapitulated in the R6/1 transgenic mouse, which can therefore be used as an experimental model to identify the neurobiological substrates of HD(More)
BACKGROUND No animal models of autism spectrum disorders (ASD) with good construct validity are currently available; using genetic models of pathologies characterized by ASD-like deficits, but with known causes, may be therefore a promising strategy. The Fmr1-KO mouse is an example of this approach, modeling Fragile X syndrome, a well-known genetic disorder(More)