Susanna Nencetti

Learn More
Matrix metalloproteinase-13 (MMP-13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis (OA). For this reason, MMP-13 synthetic inhibitors are being sought as potential therapeutic agents to prevent cartilage degradation and to halt the progression of OA. Herein, we report the synthesis and in vitro evaluation of a(More)
Matrix metalloproteinase-12 (MMP-12) can be considered an attractive target to study selective inhibitors useful in the development of new therapies for lung and cardiovascular diseases. In this study, a new series of arylsulfonamide carboxylates, with increased hydrophilicity resulting from conjugation with a β-N-acetyl-d-glucosamine moiety, were designed(More)
Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have(More)
Overexpression of macrophage elastase (MMP-12), a member of the matrix metalloproteinases family, can be linked to tissue remodeling and degradation in some inflammatory processes, such as chronic obstructive pulmonary disease (COPD), emphysema, rheumatoid arthritis (RA), and atherosclerosis. On this basis, MMP-12 can be considered an attractive target for(More)
New fluorescent ligands for adenosine receptors (ARs), obtained by the insertion, in the N(6) position of NECA, of NBD-moieties with linear alkyl spacers of increasing length, proved to possess a high affinity and selectivity for the A(3) subtype expressed in CHO cells. In fluorescence microscopy assays, compound 2d, the most active and selective for human(More)
Slowing FAP progression: Tafamidis meglumine is a small molecule capable of stabilizing the transthyretin (TTR) tetramer. Tafamidis acts in a similar way to the natural hormone T4, prevents TTR amyloid fibril formation, and offers a potential alternative to liver transplantation for the treatment of patients with TTR familial amyloid polyneuropathies(More)
Transthyretin is a homotetrameric protein that carries thyroxine and retinol binding protein in plasma and is associated with a variety of amyloid diseases. One approach to the potential treatment of TTR amyloidosis is the stabilization of the native tetramer, over the dissociative transition state, through the binding of small molecules; this increases the(More)
Crystallographic structure determination of protein-ligand complexes of transthyretin (TTR) has been hindered by the low affinity of many compounds that bind to the central cavity of the tetramer. Because crystallization trials are carried out at protein and ligand concentration that approach the millimolar range, low affinity is less of a problem than the(More)
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous isozymes involved in crucial physiological and pathological events, representing the targets of inhibitors with several therapeutic applications. In this connection, we report a new class of carbonic anhydrase inhibitors, based on the thiopyrano-fused pyrazole scaffold to which a pendant 4-sulfamoylphenyl(More)
Aggrecanases, in particular aggrecanase-2 (ADAMTS-5), are considered the principal proteases responsible for aggrecan degradation in osteoarthritis. For this reason, considerable effort has been put on the discovery and development of aggrecanase inhibitors able to slow down or halt the progression of osteoarthritis. We report herein the synthesis and(More)