Learn More
Neural-epithelial interactions are hypothesized to play an important role in bladder function. We determined whether spinal cord injury (SCI) altered several indicators of urinary bladder epithelium barrier function, including continuity of the surface umbrella cell layer, transepithelial resistance (TER), and urea and water permeability. Within 2 h of SCI,(More)
In the urinary bladder, the capsaicin-gated ion channel TRPV1 is expressed both within afferent nerve terminals and within the epithelial cells that line the bladder lumen. To determine the significance of this expression pattern, we analyzed bladder function in mice lacking TRPV1. Compared with wild-type littermates, trpv1(-/-) mice had a higher frequency(More)
The effects of mechanoreceptor stimulation and subsequent ATP release in spinal cord injured and normal bladders was examined to demonstrate if spinal cord injury (SCI) modulates the basal or evoked release of ATP from bladder urothelium and whether intravesical botulinum toxin A (BTX-A) administration inhibits urothelial ATP release, a measure of sensory(More)
We have investigated the intracellular signaling mechanisms underlying the release of nitric oxide (NO) evoked by beta-adrenoceptor (AR) agonists in urinary bladder strips and cultured bladder urothelial cells from adult rats. Reverse transcription-PCR revealed that inducible NO synthase and endothelial NOS but not neuronal NOS genes were expressed in(More)
The effects of mechanoreceptor stimulation and subsequent ATP release in cyclophosphamide evoked chronic bladder inflammation was examined to demonstrate: (1) whether inflammation modulates ATP release from bladder urothelium and (2) whether intravesical botulinum toxin A administration inhibits urothelial ATP release, a measure of sensory nerve activation.(More)
Tachykinins have been implicated in inflammatory responses such as those occurring in inflammatory bowel disease. Accordingly, we investigated the effect of a selective neurokinin (NK) 2 receptor antagonist, nepadutant, on proto-oncogene expression in the L(6)-S(1) spinal cord as well as in dorsal root ganglion (DRG) neurons after either non-noxious(More)
Caveolin-1 (Cav1), a structural protein of caveolae, plays cell- and context-dependent roles in signal transduction pathway regulation. We have generated a knockout mouse homozygous for a null mutation of the Cav1 gene. Cav1 knockout mice exhibited impaired urinary bladder contractions in vivo during cystometry. Contractions of male bladder strips were(More)
Previous studies demonstrated that acute irritation of the lower urinary tract (LUT) induces the expression of the immediate early gene, c-fos, in lumbo-sacral spinal cord neurons "J. Neurosci. 12 (1992) 4878" "Am. J. Physiol. 265 (1993) 326" "Somatosens. Mot. Res. 15 (1998) 5". This effect was mediated in part by activation of capsaicin-sensitive bladder(More)
  • 1